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Abstract

While artificial intelligence (Al) is improving the performance of
O-RAN, it will also expose the network to adversarial machine learn-
ing (AML) attacks. For this reason, in this paper, we are the first
to investigate AML in the context of deep reinforcement learning
(DRL)-based O-RAN xApps. What separates AML in O-RAN from
traditional settings is the need to design and analyze adversarial
attacks based on RAN-specific Key Performance Measures (KPMs)
such as transmitted bit rate, downlink buffer occupancy, transmit-
ted packets, etc. As such, we propose the AdvO-RAN framework,
which includes (i) a new adversarial perturbation generator using
preference-based reinforcement learning (PbRL) to learn the pertur-
bation that most violate the user service level agreements (SLA) and
(ii) a robust training module for enhancing DRL agent resilience
to the attacks in (i). We experimentally evaluate AdvO-RAN on
the Colosseum network emulator. Experimental results show that
AdvO-RAN can enhance xApp performance by reducing SLA viola-
tions from 44% to 27% on average and reducing by 46% the latency
under the most challenging attack scenario for Ultra-Reliable Low-
Latency Communications (URLLC) traffic. AdvO-RAN can improve
up to 75% of throughput in the victim Enhanced Mobile Broadband
(eMBB) slice users during a constant bit-rate traffic scenario.
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1 Introduction and Motivation

The O-RAN (Open Radio Access Network) paradigm divides the
RAN into interoperable components [1], where Extensible Applica-
tions (xApps) deployed inside the Near Real-Time RAN Intelligent
Controller (Near-RT-RIC) provide Al-driven techniques to control
critical functionalities such as network slicing, scheduling, traffic
steering, and interference mitigation [2, 3]. The deployment of Al-
driven xApps inevitably opens the door to AML. Figure 1 illustrates
the system and threat model we consider in this paper. Specifically,
O-RAN transmits sensitive data about network monitoring through
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the E2 interface, which connects the Near-RT-RIC with each of
the Base Stations (BSs) in the network to generate near-real-time
network control decisions [4]. Notably, due to the stringent latency
requirements of the Near-RT-RIC operations, O-RAN specifications
do not encrypt open interfaces such as the E2 [5], which allows at-
tackers to spoof traffic exchange and use the information to design
the attack. These attacks are facilitated by the fact that xApps will
be shared in third-party xApp marketplaces. This allows attackers
to retrieve the AI/ML algorithms embedded in xApps and fine-tune
their attack strategy accordingly.

Prior work has shown that DRL is effective in jointly allocat-
ing radio resources and scheduling users in wireless network [6].
However, AML- related vulnerabilities in DRL-based xApps have
been studied only superficially [7-9]. Specifically, we look beyond
the Radio Access Network (RAN)-level Key Performance Measures
(KPMs) and consider user-level Quality of Service (QoS) metrics
at the application layer. What is still unclear is how effective AML
can be in scenarios characterized by different applications with
diverse QoS requirements at the application level. Optimizing the
network solely on RAN-level metrics is challenging. In addition,
incorporating diverse and often unpredictable application-layer
demands increases such complexity [10].
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Figure 1: Adversarial machine learning in O-RANs.
Motivating Example. DRL-based xApps are usually designed
with internal reward functions that optimize radio resource usage,
such as spectral occupation and PRB utilization, or ensure optimal
scheduling policy selection. However, these radio-based metrics do
not necessarily correlate with the actual application-layer service
quality experienced by users measured through metrics such as
latency, jitter, or peak throughput. To showcase this, we analyzed
the impact of choosing a different slice-scheduling combination
on the application layer throughput reported by RAN users. We
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configured an eMBB traffic scenario emulating a video-streaming
application traffic of a constant bit-rate of 2 Mbps for four users
sharing the eMBB slice and we analyze two distinct slice-scheduling
actions focusing on two users (User 1 and User 2). The first, Action A,
allocates 36 Physical Resource Blocks (PRBs) using the Proportional
Fair (PF) scheduling algorithm, while the second, Action B, allocates
9 PRBs using Round Robin (RR) scheduling. Empirically, Action A
emerges as a better allocation strategy for eMBB traffic due to its
higher PRB allocation, which enables more efficient bandwidth dis-
tribution and improved throughput sustainability. Figure 2 presents
the Cumulative Distribution Function (CDF) of the throughput col-
lected from the application layer report for both actions for the
two users, and the average downlink bit rate across all slice-users
(slice-avg) collected from BS KPM report. The results indicate a
noticeable throughput degradation when transitioning from Ac-
tion A to Action B for both users. Particularly, User 2 experiences
a considerably higher probability of achieving lower application
layer throughput than the slice average. Interestingly, when ob-
serving only the average network metrics, the impact appears less
pronounced, potentially masking critical individual user perfor-
mance degradations. Application-layer QoS should be considered
to guarantee adequate user-centric performance when designing
robust DRL training strategies.
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Figure 2: Impact of slice-scheduling combinations (Action A
and B) on the application-layer throughput for two eMBB
users (User 1 and 2).

Summary of Novel Contributions

o We present AdvO-RAN to analyze the robustness of DRL-based
xApps against state-of-the-art test-time evasion attacks and miti-
gate Service Level Agreement (SLA) violation under such attacks.
AdvO-RAN evaluates the effectiveness of DRL-based xApps by test-
ing their behavior under adversarial perturbations and is designed
to facilitate the development of DRL-based xApps that are robust
and maintain SLA objectives amidst adversarial attacks;

o We consider the case where the adversary obtains a victim xApp
from the O-RAN marketplace, learns an adversarial policy that can
effectively disrupt QoS of different slice-based SLAs, and publishes
a corrupted version of the xApp on the marketplace. This corrupted
xApp executes adversarial test-time attacks based on a predefined
attack strategy while complying with constraints like perturba-
tion limit to avoid detection by the system’s intrusion detection
mechanisms;

o We experimentally evaluate the performance of AdvO-RAN on
the Colosseum network emulator [11]. Our prototype consists of
49 SDR nodes, with 42 designated as User Equipments (UEs) and 7
as BSs. Specified in Section 5, we consider two sets of robust DRL
agents operating under distinct traffic profiles and action modalities.
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The results indicate that our threat model generalizes across vari-
ous DRL-based xApps with heterogeneous control strategies and
traffic scenarios. Under adversarial conditions, our robust training
strategy significantly reduces SLA violations — defined as the per-
centage of time a slice’s DRL-based xApps with different modalities
of actions and traffic scenarios. We show that adversarial robust
training reduces SLA violations (i.e., the percentage of time the slice
Key Performance Indicator (KPI) is 70% less than the required value)
from 44% down to 27% under the strongest attacker for URLLC users.
Similarly, for eMBB users, AdvO-RAN reduces SLA violations from
33% to 17% in the worst-case attack. Additionally, AdvO-RAN recov-
ers approximately 46% of the degraded End-to-End (E2E) latency
and up to 75% of the lost throughput.

2 System Model

As illustrated in Figure 3, we consider an xApp performing joint
PRBs slicing and scheduling operations by determining optimal PRB
allocation and scheduling algorithm for each slice. Specifically, the
network slicing policy specifies the number of PRBs that should be
allocated to each slice, while the slice-specific scheduling algorithm
identifies the policy to be used for the UE downlink communication
on each slice among RR, PF and Water Filling (WF).
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Figure 3: Example of DRL-based controller xApp.
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Similar to previous work [12, 13], we consider the set C of
|C| = C = 3 slices characterized by eMBB, URLLC, and Massive
Machine Type Communications (mMTC) traffic classes, respec-
tively. Each slice is associated with a unique traffic profile and the
xApp’s DRL agent is rewarded following the extent to which it gen-
erates actions that meet the slice-specific performance objectives.
Specifically, the eMBB slice UEs requires a high bit rate to foster
applications such as video streaming or conferencing. The URLLC
slice requires extremely low latency which implies the need for a
low buffer occupancy at the UEs. Lastly, in the mMTC slice, UEs
typically represent Internet of Things (IoT) devices, e.g., small sen-
sors, and should support a massive number of short transmission
requests from several devices. We denote by K the set of KPMs
received via the E2 interface. Specifically, we use |K|=K=3 KPMs,
namely, transmission bitrate (indicated by b;x), number of trans-
mitted packets (indicated by pkt;x) and size of the downlink buffer
(indicated by bufy;). The xApp is designed to receive slice-specific
KPMs from the RAN and compute optimal PRB slicing and schedul-
ing policy for each slice relying on a DRL agent (see Figure 3). Once
the control action is generated by the DRL agent, the Near-RT-RIC
implements this control decision in the RAN via the E2 Interface.
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A DRL-controlled xApp is usually represented by a Markov
Decision Process (MDP) M=(S, 0, A, P, R, y), where S is the state
space, O is the observation space, A is the action space, P is the
transition probability function, R is the reward function, and y €
(0,1) is the discount factor. At each time step t, the agent receives
a state representation s; € S and an action a; € A interacting
with the environment including BSs and slice users. The transition
between two states s; — s41 is defined by the transition probability
P:SxA — A(S), where A is a function that maps a state-action
pair (s,a) to a probability distribution over next possible states
st+1. Based on this action, the agent obtains a reward according to
a reward function R : S X A — R. After training, a fixed policy
7 is used by the xApp to take actions based on the RAN state it
receives. Specifically, each time step t, the RAN state is composed
of the KPMs combined into a matrix I(t) € RM*KXC where M is
the number of measurement reports collected at time step t. For
example, if M = 10 measurement reports are collected for each
step ¢, the monitored KPMs is K = 3, and we have C = 3 slices, the
shape of the input matrix I(¢) becomes 10 X 3 X 3. Now, we denote
by k € K= {bsx, pktix, bufy;} the KPM index in matrix I, and by
me{l,...,M}andce{1,...,C} the measurement and slice indices,
respectively. An element of the KPM matrix I can then be identified
by iy, k - Indicating with we the slice-specific weight component
of the reward signal, the reward function is formulated as:

C 1 M

Ri(1) = Zl we o mzzl im ke (£)- (1)
For the eMBB slice the target KPM is the transmit bitrate, while tar-
get KPM for mMTC and URLLC slices are the number of transmitted
packets and the downlink buffer size respectively. For example, an
action that increases bit rate for eMBB UEs, maximizes the number
of transmitted packets for mMTC, and decreases downlink buffer
occupancy for URLLC UEs UEs generates a high reward as it seeks
to maximize network performance and converge to the optimal
slice/scheduling policies for each slice. By modulating the weights
w;, the agent is trained to maximize specific objectives for a par-
ticular slice or a global objective for the entire system [13]. In this
work, we consider two agents, namely eMBB-MAX (EM) and uRLLC-
MAX (UM). The former has the objective of maximizing the average
eMBB user throughput using a reward function based on the aver-
age throughput of the slice users. Instead, the uRLLC-MAX (UM)
agent targets the minimization of the latency of URLLC traffic flows
using a reward function inversely proportional to the downlink
buffer metric. Note that, depending on the objective of the agent,
the goal of the adversary also needs to be changed (see Section 4).
As depicted in Figure 3, an encoder block preprocesses the RAN
KPM matrix into a compact latent representation, which serves as
the actual state representation. The input matrix I is processed in a
slice-independent fashion, obtaining a latent feature vector for each
slice. In this way, each vector contains the encoded information of
KPMs of each slice. The C = 3 latent vectors are then concatenated
to generate the input for the DRL agent. The encoder block is trained
as part of an autoencoder to reduce the dimensionality of the input
matrix as well as removing noise from data, thus facilitating training
and generalization of the DRL agent [14]. After training, only the
encoder is retained and included in the system. The concatenated

latent feature vector is then fed into the DRL agent.
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3 Threat Model

We design an evasion attack strategy to a DRL victim agent in the
xApp. In line with recent literature, we consider a worst-case sce-
nario with white-box access to the victim’s policy 7 [15-17]. The
attacker has access only to the victim agent’s model parameters
and can observe its interactions with the environment, but does
not have knowledge of we, the reward function weights. We are
interested in a typical state adversary that perturbs the state obser-
vations (i.e., the concatenated latent representations s(¢) output by
the encoder) before they reach the agent. Such a state adversary is
modeled by a function A which perturbs the state s € S such that
it becomes § := h(s). To ensure stealthiness and practicality, we
consider the commonly adopted £, norm ball as the perturbation.
The perturbation applied to s is constrained such that § € R” and
[15=sllp < e, where € is perturbation magnitude budget and n is the
dimensionality of the states. We make the following assumptions:
(1) Access. We assume the attacker gains unauthorised, time-limited
access to the E2 interface, enabling eavesdropping on control mes-
sages and KPM data—an exposure typical of open O-RAN interfaces
.(2) Knowledge. By downloading a third-party implementation of
the victim xApp from an open marketplace, the attacker can inspect
the code and learn the exact state- and action-space dimensions;
we also assume it knows the encoder architecture used to train the
xApps. (3) Ability. Holding a foothold on the E2 link, the attacker
can intercept ASN.1-encoded messages and replace them with ad-
versarial ones containing perturbed KPMs; ASN.1 structures data
but does not encrypt it. (4) Perturbation budget. Perturbations
are bounded in an £, ball: ||S — 5|, < €. The adversary seeks to
maximise SLA violations while keeping changes small enough to
evade detection. Remark. Anomaly-detection defences on the E2
interface are complementary counter-measures and therefore lie
outside the scope of this work.

4 Design of AdvO-RAN

AdvO-RAN protects DRL agents against different types of attacks
based on the constraints set by the operators (i.e., the traffic profiles,
and perturbation budget). A walk-through of the main operations
of AdvO-RAN is summarized in Figure 4.

Model Trainer xApps Catalog
Operstor [ gy g
Constraints |: DRL
my - FoR s gent ¥ | DRL
Training : Envir. : Training Agents HxApps
Config. |___Sitlip__ |
T
1
Digital Twin Space :
i e 1
A4
DA Runtime Channel RAN
T | Testing | Emulator | ] Analytics
on RIC

Figure 4: AdvO-RAN workflow.

First, the robust DRL agent constraints set by the operator are
parsed (Step 1 in Figure 4) to extract relevant robust model training
configurations such as perturbation budget, traffic profile/scenario,
estimated reward function parameters for preference based rein-
forcement learning (PbRL) — details in Section 4.1. This configura-
tion is used to set up an adversarial O-RAN environment through
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the ‘DataGen’ module (step 2). The adversarial O-RAN environment
in the context of DRL agent training requires defining an optimal
adversary given a set of constraints (set by the operators) adding
perturbations to the RAN KPM. The DRL agent is robustly trained
(following the steps detailed in Section 4.1) using adversarial state
representations and stored in the xApps catalog (Step 3).

An adversarial dataset (state-action pairs along with correspond-
ing application layer QoS) is collected for training the estimated
reward function for PbRL. From the xApps catalog, trained robust
agents are dispatched to Near-RT RIC (step 4) for deployment,
where they undergo runtime testing (Step 5) within a digital twin.A
channel emulator using real-world cellular traces enables runtime
testing of the robust agent. The analytics module (Step 6) evaluates
performance, revealing how adversarial conditions impact xApp
functionality and system adaptability. Thus, AdvO-RAN proactively
assesses and optimizes DRL-based xApps before live O-RAN de-
ployment, enhancing reliability and robustness.

4.1 Adversarial Robust Training

To effectively train a robust DRL-based xApp, it is essential to
identify the optimal adversarial policy 7, within the same MDP
environment in which the victim xApp operates. As detailed by
Zhang et al. [17], such an adversary exists within a state-adversarial
Markov Decision Process (SA-MDP), formally defined by the tuple
M= (3, ﬁ, fz, 72, @), whereas the victim xApp is originally trained
in a clean MDP M. In the SA-MDP, S represents the adversarial
state-space, A is the adversarial action space and h(s) € S charac-
terizes the state perturbation imposed by the adversarial policy, as
discussed in Section 3. To formulate optimal state perturbations, the
adversary learns the state-action transition probabilities ? within
the SA-MDP. Recent state-adversarial threat model approaches,
such as those proposed in [17, 18], adopt adversarial learning strate-
gies that optimize the adversarial policy primarily based on the
victim’s reward function. However, this way, the adversary does
not learn the perturbation policy based on the QoS metrics.

Data-driven Adversarial Reward Modeling: To obtain a reward
estimation based on QoS, we follow the PbRL framework [19] which
does not rely on the ground-truth reward function and is instead
based on learning human intention. As we do not require human in-
tervention, we modify the method by incorporating the application
layer QoS. We consider training policy my with reward function
#y parameterized by 6 and . The latter provides the abstraction
between QoS and victim DRL state-action transitions.

The first step to train 7y entails the collection of a dataset D
consisting of state-action sequence pairs noted as (¢, o%). Each
sequence o = {s;,ar, -+ -, Sp4ds Areq ) contains d state-action transi-
tions of the victim DRL agents from timestep ¢ up to timestep ¢ + d.
A state-action sequence o is obtained by using a random initial state
st and collecting the evolution of the MDP representing the xApp.
The initial state s; is selected through a random sampling technique
from the set S of input states of the victim’s DRL agent collected
for offline training. Hence, 0 and ¢ are two possible evolutions
of the system that are then labeled using preference-based labeling.
Specifically, each pair of sequences (0%, 0%) is associated with a
preference label y € {(0, 1), (1,0)} indicating which segment is pre-
ferred by the attacker based on the application-layer performance
metrics. We follow a data-driven approach to automatically mark
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Algorithm 1 Soft actor-critic adversarial reward learning

1: Input: Dataset D, reward model 7, with initial parameters ¢/,
learning rate #, discount factor y, replay buffer B, number of
gradient steps

2. Initialize: g, Q. fy, and Q p;
3: for each training epoch do
4: for each batch (6%, 0%, y) ~ D do
5 Compute preference probability (see Equation (3))
6: Compute cross-entropy loss (see Equation (4))
7: Update  using gradient descent: y « ¢ — nVy, L(¥)
8: for each timestep ¢ in both ¢ and % do
9: Fr — Py (se, ar)
10: Store transition B «— B U {s;, ar, St+1, Pt }
11: for each gradient step do
12: Sample transitions (s, ar, Sr+1, r}¢) ~B
13: Compute target soft value V (sz41) using Equation (6)
14: Update Q-function parameters using Equation (5)
15: Update 7y using Equation (7)

16: Return: Trained 7, and g

each (0%, 0%) in the dataset with a preference label. This is done
relying on the application-layer KPMs (i.e., end-to-end throughput,
latency, packet loss, video stuttering count, etc.) which are collected
together with the O dataset. Based on the KPMs, the attacker uses
a thresholding strategy on the SLA violation to determine which
state-action sequence aligns better with its goal and, in turn, asso-
ciates the y label to the pair. To do this, we define a binary indicator
function I (t) for each time step ¢ in a sequence o. The function
returns 1 if a SLA violation occurs in that timestep and 0 otherwise.
Hence, we define a SLA violation score for the sequence o as
t+d

Vita(0) = 5 3 To (). @
=t

The attacker’s preferred state-action sequence o is the one with the
highest SLA violation score. Hence, y is set to (0, 1) if Vy;,(c*) >
Vs1a(0%), while if V,(0%) > Vg,(0%) the y label is set to (1,0).
In case of Vg;,(0%) = Vyj4(0%) label is assigned randomly. After
labeling all the entries, the dataset D becomes a set of triplets in the
form (0%, 6%, y). The reward modeling procedure is summarized
in Algorithm 1. The algorithm learns the reward model #;, which
provides a scalar reward for a given state-action sequence. The
algorithm starts with loading dataset O and initializing the reward
policy g, the reward model 7, and the target Q-function Q 3 used
in soft actor-critic learning (lines 1 and 2 in Algorithm 1). The
algorithm iteratively (over different epochs, line 3) updates the
reward model based on the difference between the y label and
the preference predicted for the (6%, 0%) sequence pair. We define
a predictor based on a Bradley-Terry [20] model. Using this, the
probability that sequence o* is preferred over o7 is obtained as

exp Xy fl/,(s;‘, ay)

P¢[0x>az]= T
Zie{x,z} exp Xt rlﬁ(st’ a;)

®G)

After obtaining Py [¢* = ¢“] (lines 4 and 5 in Algorithm 1) for a
batch of samples in the dataset O, the reward model parameter
1 is optimized to align the preferences with the preference labels
y. To do this, we minimize the cross-entropy loss .£(}) between
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the prediction Py [0* > 0°] and preference label y as (line 6 in
Algorithm 1), which is formulated as

L) =-E(ox 0% y)~D Z y(i)log Py |o' = =N | (g)

ie{x,z}

The gradient descent algorithm is used to update i based on the loss
in Equation (4) (line 7, where 7 is the learning rate). Hence, for each
timestep ¢ in the o sequences, we compute the estimated reward
#y,+ and store the transitions in buffer B (lines 8-10). Following
the approaches in work [21], we train a soft actor-critic policy
mg using reward fy,. The critic Q-function Q4 parameterized by ¢
is optimized by reducing the Bellman residual with a state value
function V(.) and the estimated reward 7#;. Specifically, for each
transition (s;, ar, sp+1) sampled from buffer B the Bellman residual
is obtained as

Jo(#) =E(s, ap,541)~B [(Q(ﬁ (st.at) — ¢ = YV(SHI))Z] . (5

where the state value function V(.) is obtained accounting for the
target soft Q-value function parameterized by ¢ as

V(st) = Bayomy |Qg(st-ar) — plogmp(ards)| . (©)
Finally, the reward policy 7y is updated by minimizing the loss
function J,(.) formulated as

Jr(0) = Eg,~B.a,~n, |1110g mg(arlst) — Qg (st ar)| . (7)

This way, AdvO-RAN captures the state-action pairs that cause
maximum SLA violations while learning reward 7, and policy ry.

Training an adversary for state-space perturbation: After train-
ing the preference-based reward model 7, and the aligned policy
7o using Algorithm 1, the next step is to train an adversarial state-
space perturbation function V (s), where s € S is the actual latent
state representation. The function V(s) outputs a perturbation
vector that modifies the state as §=s + V (s), with the constraint
that the perturbation magnitude is bounded by a perturbation mag-
nitude budget € > 0, i.e., [[V(s)llp < €, where || - ||, denotes the
fp norm. The objective is to perturb the input state such that the
victim xApp’s policy, denoted by 7, produces actions that closely
mimic the behavior of the attacker’s preference-aligned policy 7y,
when evaluated on the perturbed state s. To this end, the adver-
sary is trained to maximize the cumulative reward given by the
learned preference-based reward function fw, while ensuring that
the perturbations remain within the norm ball defined by € (see
Section 3). The adversary is therefore optimized to maximize the
expected cumulative reward using the learned reward model, i.e., it

maximizes the function
T

T (530) =By, | D ¥+ Py (5t + Vo (50), 2 51+ Voo (52))|» (3)
=0

where D,, is the distribution of latent states collected from the
environment, T is the episode length and y € (0, 1) is the discount
factor that controls the importance of future rewards. The adversary
aims to find the parameters w that maximize this cumulative reward.
To enforce the perturbation constraint, we introduce a penalty term
that increases the loss when the norm of the perturbation exceeds
the budget set by the £, ball following equation:

Lpen(st) = 4+ Eg,wp,, [max (0, [ Vo (s)llp —€)], ()
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where A > 0 is a regularization coefficient to penalize the con-
straint. Additionally, to explicitly align the behavior of the victim
policy 7y on the perturbed states with the preference-based policy
19 we introduce a sequence-level imitation loss using the Kull-
back-Leibler (KL) divergence between 7y (s;) and ng(s;) action
probability distributions:

Lx(st) = p - Bg,vp [DrL (70v (st + Voo (s0)) | mo ()], (10)

where f > 0 is a weighting factor that controls the strength of this
imitation loss. Overall, the loss used to train V,, is a combination
of the three components introduced above in Equations 8, 9, 10, i.e.,

L(st;w) = j(sﬁw) + Lpen(st) + LKL(St)~ (11)

We minimize £ (w, s;) using stochastic gradient descent with Adam
optimizer. The perturbation function V,, is modeled as a fully con-
nected neural network with input size equal to the dimension of the
concatenated latent features s € S and the output is a perturbation
vector § = V(s) of the same dimension.

Optimized training for robustness: Finally, to achieve robustness
with a policy that can counter the effect of adversary V, we follow
the approaches in ATLA-PPO [22], a generalized training frame-
work that employs an alternating training approach. Algorithm 2
describes the robust training method with a fixed adversary.

Algorithm 2 Robust training with fixed adversary

1: procedure ADVTRAJ(V,,, flﬁ, b, ;)

2 Initialize empty dataset D,

3 fori=0tobdo

4 Sample a starting state so ~ p(s)

5: fort=0to T do

6 Compute perturbation 8; = V,, (s¢)
7 Compute perturbed state $; = s; + &;
8 Sample action a; ~ 77 (+|S¢)

9 Execute a; and get next state sy

10: Compute reward r; = 7, (5¢, ar)
11: Append transition (s¢, Sz, ar, rt, St+1) — Dy
12: return D,

13: Input: Robust policy 77, adversary V,,, number of iterations
Niter, batch size b.

14: for i = 1 to Njter do

15: Dy — AdvTraj(V,,, f'y/,, b, ;)

16: Compute advantage estimates:

17: for (s4, S¢, at,14,5141) € Dy do

18: Compute return using Equation (1): R; = Ztho y R(t)
19: Estimate value V (s;)

20: Compute advantage A =Ry - V(st)

21: Compute PPO loss Lppo using Equation (12)

22: Compute robust loss Lentropy Equation (13)

23: Update 7, using stochastic gradient descent

24: return

The input of the algorithm contains robust policy we intend
to train z; parametrized by 7, the adversary V,,, the number of
iterations Nijter, and the batch size b. During each iteration, a batch
of b perturbed trajectory is generated using the ADVTRAJ procedure
(lines 1-12 in Algorithm 2). The procedure starts by initializing an
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empty replay buffer D, (line 2) that is populated iterating over
batches of b samples (line 3), starting from a random starting state so
sampled from the state distribution p(s) (line 4). For each time step ¢
(line 5 in Algorithm 2), we first compute the adversarial perturbation
dr using a fixed, pretrained V,,, which takes the clean state s;
as input (line 6). The resulting perturbed state is then obtained
as Sy = sy + Oy, simulating the effect of corrupted or adversarial
observations (line 7). Using this perturbed state, the robust policy
7y samples an action a; according to its current policy distribution
(line 8). The action a; is then executed in the environment (line
9), and the next state s;41 is observed. A reward r; is generated
using the learned preference-based reward model 7, which reflects
application-layer feedback. Finally, the full transition sequence
(St, 8¢, az, e, se+1) 1s stored in the replay buffer D (line 11). This
process is repeated for each timestep and sequence, and once all
trajectories are collected, the buffer D is returned (line 13).

By using the ADVTRAJ procedure, we collect a batch of perturbed
trajectories using the current robust policy 7; and reward model
fy. Next, the algorithm estimates the advantage function A =
R; — V(s;) for each timestep in the collected transitions (line 20
in Algorithm 2). This involves computing the discounted return
Ry = Ztho y R(t) (line 18) and subtracting the estimate value V (s;)
(line 19). Once the advantages are computed, we evaluate the PPO
surrogate loss (line 21) where the objective is to maximize a clipped
policy improvement to ensure stable updates, i.e.,

Lrpo (1) =E50)~0, [min [Pt(f)At,
(12)
clip (pt(r), 1 - €ip, 1+ echp) AtH

Hence, the robust loss is computed by adding an entropy regular-
ization term to the PPO loss to encourage policy stochasticity and
exploration (line 22). Mathematically, the robust loss is obtained as

Liobust () = Lepo(7) = Nlent - s~ p,, [H [ (1511, (13)
where the term H [, (-|$)] denotes the entropy of the action distri-
bution under the policy given the perturbed state 5. The term nens
is a hyperparameter that controls the strength of the entropy reg-

LGN
014 (arlse)
sampling ratio between the new and old policy probabilities for
action a;. This robust loss is minimized over each iteration using a
stochastic gradient descent algorithm and the policy 77 is updated
accordingly (line 23). After training the 7, in this way, we obtain a
robust agent with a policy that is resilient to adversarial perturba-
tions generated by “V (s). This policy enables the agent to maintain
adequate slice-level performance under adversarial conditions.

ularization term. The term p;(7) = is the importance

Although the Bradley-Terry model transforms each sequence
pair (0%, 0%) into the probability Py[c* > o] in Eq. (3), it as-
sumes the associated label is correct and weights every observation
equally. Thus, mislabeled or extreme-reward pairs may still influ-
ence the maximum-likelihood fit, as the model offers no guarantee
of statistical robustness to such outliers.

5 AdvO-RAN Experimental Evaluation

We prototyped AdvO-RAN on the Colosseum network emulator [12,
23]. We utilized the ColO-RAN and SCOPE frameworks [24] which
allow simulating realistic O-RAN deployments. We benchmarked
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AdvO-RAN in multiple network scenarios comprising 7 BSs, each
serving 6 UEs, along with O-RAN components such as the Near-
RT-RIC and xApps interfaced with BSs via the E2 interface. BSs
and UEs are implemented as Linux Containerss (LXCs). Specifi-
cally, we conducted our experiments using the SCOPE Rome Urban
scenario, where BS placement reflects real cell deployments from
the OpenCellID database [25]. Traffic generation is handled by the
Multi-Generator (MGEN) tool, which allows emulating different
traffic profiles and capturing application-layer metrics at the UE
side for each transmitted packet.

We considered two traffic profiles (TP1 and TP2) associated with
different agents’ action modalities. In TP1, we consider an agent
that allocates a total of 50 PRBs for a 10 MHz channel across the
slices and also selects the scheduling policy for each slice. The max-
imum application data rate for eMBB, mMTC and URLLC users in
TP1 emulation is set to 4 Mbps, 44 kbps and 89.3 kbps, respectively.
An agent that only selects the scheduling policy while keeping the
PRBs allocation fixed for a 3 MHz channel is instead considered
for TP2. The maximum application data rate for eMBB, mMTC and
URLLC users in TP2 emulation is set to 1 Mbps, 30 kbps and 10 kbps
respectively. The agent’s actions are applied through SCOPE. Obser-
vations for the agent are generated by periodically sampling data
reflecting the most recent 250 ms of network activity, correspond-
ing to a single timestep in the environment. For training purposes,
we define each episode to span 10 timesteps. We employ a Proximal
Policy Optimization (PPO) to train each victim model. The actor
and value networks are composed of 5 fully connected layers each,
with 30 neurons, using the hyperbolic tangent (tanh) activation
function. The agent is trained using a learning rate of 1e—3 and a
replay buffer batch size of 64. The discount factor y is set to 0.1, and
Generalized Advantage Estimation (GAE) is leveraged to reduce
variance. Entropy regularization is applied with a coefficient of 0.1
to encourage exploration and an importance ratio clipping of 0.2
is used to stabilize policy updates. Regarding SLA violation and
E2E metric comparison, we choose 2 PRBs for the eMBB slice and 4
PRBs for the URLLC slice to generate a resource-constrained traffic
scenario for eMBB users.

5.1 Attack and Robust Training Baselines

We consider three baseline attacks in addition to our perturbation
strategy. The four approaches are first compared to assess their
attack power and then used to evaluate AdvO-RAN robust training.
e Random Attack (RA): Perturbations are uniformly sampled
within an Ly-norm ball of radius € centered around the state space;
e Worst-Action Attack (WA): In this attack — introduced in [16]
— the adversary perturbs the state by following the sign of the
gradient of the loss between the victim policy and an alternative
policy that always selects the least likely action (i.e., the action with
the lowest probability under the victim’s current policy). We set
p = oo for £,-norm to generate perturbation noise in the input state
following the original implementation;

e Policy Adversarial Actor Director Attack (PA-AD): It is a
two-stage procedure involving a director and an actor. The director
solves an MDP to identify the most effective gradient direction to
perturb the xApp observations. The actor then executes a gradient-
based adversarial attack — aligned with the direction suggested
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by the director — to generate the perturbation [18]. We use Pro-
jected Gradient Descent (PGD) in [26] as a perturbation generation
method with 20 iterations. We set p=2 for £,-norm based PGD to
find the perturbation direction;

o Adv-ORAN Attack (AO): It leverages the perturbation generated
by our AdvO-RAN framework. We perform a comprehensive grid
search to tune its hyperparameters and observe optimal attack
performance with a learning rate of 7 = 1073 and a loss coefficient
ratio of f/A = 0.2 between the KL divergence loss (Equation (10))
and the penalty loss (Equation (9)). All trainable components are
optimized using Adam. For the data-driven adversarial reward,
we evaluate different state-action sequence segment lengths d €
{1,2,5,10} and find that d = 10 yields the fastest convergence.

In addition, we compare our AdvO-RAN robust training approach
with the following two state-of-the-art strategies:

¢ RADIAL-PPO [27]: This method modifies the PPO objective
using an additional adversarial loss term. The goal is to reduce
the sensitivity to input perturbation. It defines a worst-case pol-
icy distribution by explicitly shifting probability mass away from
the optimal policy. The adversarial loss term is defined as the ex-
pected clipped PPO loss between the original and worst-case policy
distributions under perturbations;

® SA-PPO [28]: This framework trains PPO agent integrating a
robust regularizer term in the policy optimization phase derived
from the SA-MDP framework. This approach explicitly models the
presence of worst-case perturbations in the state observations and
penalizes policies that are overly sensitive to such attacks.

While these prior methods use the environment’s native reward,
our method introduces perturbations in the state space guided by a
preference-based reward function, thus allowing for more targeted
and context-aware adversarial behavior.

5.2 Evaluation Metrics

To understand the E2E impact of AdvO-RAN robust training we
considered two application layer metrics: E2E throughput (mea-
sured in bit per second, [bps]) and E2E latency (in seconds, [s]).
These metrics are collected on the user side during each experiment
using MGEN traffic. For eMBB slice users, the E2E throughput rep-
resents the most significant metric that should be sufficiently high
to support applications such as video streaming. For URLLC users,
the key performance-related aspect is captured by the E2E latency
as URLLC communication demands strict delay bounds to ensure
timely and deterministic message delivery. At the medium access
control (MAC) layer we collect information about the slice PRBs and
scheduling algorithm for the users to determine resource allocation
strategy under attack and during robust agents operation.

Using these metrics, we assess SLA violations under two con-
ditions: static and dynamic thresholds. In the static SLA scenario,
a violation occurs when the system delivers less than 70% of the
predefined E2E performance target. For the eMBB slice, this cor-
responds to receiving less than 70% of the target E2E throughput
(4 Mbps for TP1 and 0.7 Mbps for TP2), while for the URLLC slice,
it corresponds to E2E latency exceeding 70% of the latency bounds
(5ms for TP1 and 10 ms for TP2). In the dynamic SLA scenario,
we capture traffic demand variability by sampling the expected
performance level at each time step from a Gaussian distribution
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Figure 5: Normalized mean reward per episode under varying
perturbation budgets. The lines show medians, shaded areas
show variance.
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Figure 6: Median SLA violations of AdvO-RAN (AO) and base-
line attacks compared with the no-attack (NA) scenario.

N (0.7, 0.22). A violation is detected if the system fails to meet 70%
of the sampled throughput target for eMBB, or if the latency ex-
ceeds 70% of the sampled latency bound for URLLC. SLA violations
are evaluated over non-overlapping 5-second windows throughout
the simulation.

5.3 Experimental Results

In the following, we assess the effectiveness of AdvO-RAN in train-
ing robust PPO agents the previously defined metrics.

Perturbation budget hyperparameter selection: We used per-
turbation budget € € {0.1,0.2,0.3,0.4,0.5}. Figure 5 presents the
normalized average reward per episode over 1 million training
steps for robust agents trained under each perturbation level. In the
TP1 traffic scenario (Figure 5a), e=0.3 yields the highest average
reward, indicating more effective robustness. For TP2 (Figure 5b),
both € = 0.2 and € = 0.3 result in comparable performance, with
€=0.3 slightly outperforming over longer training durations. Based
on these findings, we select €=0.3 as the perturbation budget for
all subsequent evaluations.
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SLA violation under different attacks: Figure 6 compares the
median SLA violation of the AdvO-RAN attack (AO) and the base-
line attacks presented in Section 5.1. A no-attack baseline (NA) has
been included to quantify performance under benign conditions.
Downlink traffic flows are simulated for 600 seconds, during which
SLA violations are recorded according to the definitions provided
in Section 5.2 for the EM and UM agents in static and dynamic
SLA scenarios. Each attack scenario is executed for 10 iterations,
and the median SLA violations is reported. The results in Figure 6
show that the UM agent is significantly more vulnerable than the
EM agent under adversarial attacks. For example, in static SLA
settings (Figure 6b), the UM agent experiences the highest SLA
violation rate of approximately 44% under the AdvO-RAN attack
for traffic profile TP2, compared to around 40% for WA and slightly
less for PA-AD. Instead, the EM agent in the static SLA scenario
(Figure 6a) maintains SLA violations below 25% across all attacks,
demonstrating higher robustness compared to the UM agent. A
similar pattern is observed in the dynamic SLA scenario. The UM
agent (Figure 6d) suffers maximum SLA violations under the AO
attack, reaching around 44% in TP2, while the EM agent (Figure 6c)
limits SLA violations to below 30% even under the strongest attack
(WA). Noticeably, our new AO attack leads to consistently higher
SLA degradation compared to the RA, WA, and PA-AD baselines
across all scenarios, especially when considering the UM agent. Fur-
thermore, the TP1 scene consistently exhibits lower SLA violations
than TP2 across all attacks and agent types, indicating that TP1
provides larger discrete action space as the agent can select both
the allocation and scheduling policy, enabling higher robustness
and thus reducing SLA violations. In contrast, in TP2 the agent’s de-
cision space is limited as it only selects the scheduling policy. This
makes it more susceptible to well-crafted attacks like AO. These
results confirm that agents operating under resource-constrained
spaces (like TP2) are more susceptible to adversarial perturbations.
To summarize, (i) The AO (AdvO-RAN) attack induces the highest
degradation in both throughput and latency; (ii) TP2, associated
with a smaller action space, is significantly more vulnerable under
AO than TP1; (iii) TP1 demonstrates stronger resilience due to its
higher action space, maintaining relatively stable performance even
under attack; (iv) WA and PA-AD show moderate impact on the
SLA violation, while RA is the least disruptive.

SLA violation under different robust training approaches.
Figure 7 compares the effectiveness of AdvO-RAN (AOD) in the
figure) and the other baseline robust training methods in reducing
the SLA violation rates when the robust agents are attacked with
the AdvO-RAN (AO) attack. The results are presented for both
EM and UM agents under static and dynamic SLA scenarios. As
shown in the figure, AdvO-RAN maintains SLA violation rates
closer to the NA scenario than other robust training baselines.
Under dynamic SLA conditions for EM agents (Figure 7c), the no-
attack violation rate for TP1 is 13%, while AOD maintains violations
at 15%. In contrast, SA-PPO and RADIAL result in violations of 23%
and 24%, respectively, introducing a much larger gap of 10-11%.
Similar trends are observed in TP2, where AOD reduces violations
to 17-19%, while the baseline agents remain above 22-25%. For
UM agents (Figure 7d & 7b), AOD does not perform as closely to
the no-attack scenario as it does for EM agents, particularly in
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Figure 7: Median SLA violations of AdvO-RAN robust agent
and baseline robust training methods when the AdvO-RAN
(AO) is in place compared with the no-attack (NA) situation.

TP2 under dynamic SLA. However, it still achieves improvements
over the baselines, reducing SLA violations by up to 24% compared
to SA-PPO and RADIAL. Overall, AOD remains effective across
both static and dynamic SLA conditions, outperforming baselines
with lower violations under adversarial attacks. Comparing the
worst SLA violations observed in Figure 6b with the corresponding
recovery shown in Figure 7b, we can observe that AdvO-RAN method
reduces SLA violations from 44% to 27% under the static and 41% to
19% in dynamic SLA scenario for TP2 traffic profile.

End-to-End Throughput and Latency: Complementing the
SLA improvements, AdvO-RAN (AOD) also substantially enhances
EZ2E application-layer performance, compensating for the degra-
dation introduced by the AdvO-RAN (AO) attack. Figure 8 shows
that our proposed AO attack reduces the median E2E through-
put of eMBB slice users by 8% in TP1 and 45% in the TP2 traffic
scenario—representing the highest degradation among all base-
line attacks compared to the no-attack (NA) case. Analyzing Fig-
ures 8 and 9, we observe that AdvO-RAN (AOD) improved the E2E
throughput by 3.33% and 75% compared to the worst-case attack
scenario (AO) in TP1 and TP2 respectively. Similarly, for the URLLC
slice agent (UM), the AdvO-RAN attack (AO) increases latency by
20% in TP1 and 91% in TP2 when compared to the NA case (see
Figure 10a). Under the same AO attack environment, AdvO-RAN
(AOD) robust training reduces the median latency by 15% in TP1
and 46% in TP2 (see Figure 10b).

AdvO-RAN in resource-constrained scenarios. To validate the
effectiveness of AdvO-RAN in robust training under resource con-
strained conditions, we used TP2, in a single action modality (sched-
uling only with fixed PRBs per slice), chosen for its ease of visu-
alizing the action distribution. In Figure 11 presents the schedul-
ing policy distributions over 20 runs under three conditions: NA,
AdvO-RAN (AO) attack, and AdvO-RAN (AOD) robust agent with
AdvO-RAN (AO) attack. When the slice is provisioned with abun-
dant resources (PRB=8), the agent predominantly selects the WF
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policy for all users. In contrast, under limited PRB availability, the
agent tends to favor the PF policy to ensure fairness and compen-
sate for PRB scarcity. From Figure 11a, under attack the victim
agent allocates policy RR more (14.56%) than in the NA condition
(4.0%). AOD robust training reinstates this behavior of the agent
and reduces the RR allocation to just 4.6%. Similarly, Figure 11b
shows, AOD consistently reduces RR allocation, often replacing
it with more effective scheduling strategies (PF). Notably, when
the slice receives larger PRB allocation (PRB=8), AOD reduces RR
usage from 12.55% to 1.33% in the URLLC slice, and from 13.05% to
0.02% in the eMBB slice.

Scaling factor. The encoder processes a fixed-length slice-level
metric vector. If Nyg denotes the total number of user equipments
and Nps denotes the total number of base stations, its per-BS pro-
cessing cost is constant and the aggregate latency grows as (Ngg)
while remaining O(1) with respect to Nyg. Because the attacker’s
and defender’s policies take a single latent representation per BS
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Figure 11: Comparison of EM agent scheduling policy distri-
butions across fixed slices (UM and eMBB) with TP2.

in each batch, their forward-pass complexity follows the same
O(Ngg) trend, ensuring that the combined encoder—policy delay
stays within the near-real-time control window.

6 Related Work

Security in O-RAN. Despite progress in machine learning (ML)-
based RAN control, the cyber threats and privacy risks to ML-
driven xApps, rApps, and closed-loop O-RAN system are largely
unexplored. The 11 Working Groups of the O-RAN Alliance have
identified key ML-related security issues in the near-RT RIC archi-
tecture, relevant interfaces, xApps, and APIs [29]. Although prior
work — see survey [30] — provides a detailed review of security
and privacy risks in O-RAN,; it lacks a comprehensive analysis and
validation of how these threats could be executed. This gap un-
derscores the need for further research and practical validation to
enhance the security of O-RAN.

ML-Based xApps. Existing xApps use RNNs [31], DRL [32], and
CNN-based spectrogram detectors [33], all trained on RAN data
via the E2 Interface. However, none address security threats like
data poisoning or intrusion that could disrupt the control loop and
degrade performance. Hence, O-RAN benchmarking frameworks
like AdvO-RAN are essential for training and testing DRL models to
ensure robust xApps perform reliably in adversarial environment.
Adversarial DRL. The vulnerability in DRL has been explored
n [15], where the authors proposed a method to uniformly at-
tack the state space. Additional state-space attacks and defense
strategies mostly assume white-box settings [34, 35]. A number of
black-box approaches [36] attempt to infer agent action sequences
to identify optimal attack points.In [37] the authors constrained
the action space by spatio-temporal criteria and showed vulnera-
bilities in cyber-physical systems [38] and temporally perturbed
both action and state space [37]. Existing adversarial approaches
primarily focus on degrading the victim agent’s reward, which may
result in suboptimal attacks in the context of O-RAN, where the
primary objective of the network is to provide better QoS rather
than maximizing reward.

7 Limitations and Future Work

Our study has several limitations as follows: (1) To adapt to a
new traffic patterns, the DRL agents in the xApps should be re-
trained or fine-tuned with the updated KPM distributions. Simi-
larly, the attacker must realign its policy with the fine-tuned slicing
agent. (2) Our reward design assumes fixed, noise-free SLA thresh-
olds when deriving preference labels. In practice, these thresholds
can drift or become noisy as traffic pattern changes, potentially
mis-aligning the learned preferences. Developing attacker and de-
fender policies that remain reliable under dynamic or noisy SLAs
is a promising direction for future work.
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Concluding Remarks

We presented AdvO-RAN, a framework to mitigate adversarial
threats to DRL-based xApps in Al-driven O-RAN. AdvO-RAN uses
preference-based reward modeling to strengthen SLA compliance
and provides an O-RAN-compliant platform for developing, train-
ing, and benchmarking xApps under evasion attacks. Prototyped
on the Colosseum emulator, AdvO-RAN reduced SLA violations
from 44% to 27% on average, reduce latency by up to 46% under the
strongest attacks, and recovered up to 75% of median end-to-end
eMBB throughput in the most challenging scenarios.
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