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Abstract
While artificial intelligence (AI) is improving the performance of

O-RAN, it will also expose the network to adversarial machine learn-

ing (AML) attacks. For this reason, in this paper, we are the first

to investigate AML in the context of deep reinforcement learning

(DRL)-based O-RAN xApps. What separates AML in O-RAN from

traditional settings is the need to design and analyze adversarial

attacks based on RAN-specific Key Performance Measures (KPMs)

such as transmitted bit rate, downlink buffer occupancy, transmit-

ted packets, etc. As such, we propose the AdvO-RAN framework,

which includes (i) a new adversarial perturbation generator using

preference-based reinforcement learning (PbRL) to learn the pertur-

bation that most violate the user service level agreements (SLA) and

(ii) a robust training module for enhancing DRL agent resilience

to the attacks in (i). We experimentally evaluate AdvO-RAN on

the Colosseum network emulator. Experimental results show that

AdvO-RAN can enhance xApp performance by reducing SLA viola-

tions from 44% to 27% on average and reducing by 46% the latency

under the most challenging attack scenario for Ultra-Reliable Low-

Latency Communications (URLLC) traffic. AdvO-RAN can improve

up to 75% of throughput in the victim Enhanced Mobile Broadband

(eMBB) slice users during a constant bit-rate traffic scenario.

CCS Concepts
•Computingmethodologies→Machine learning; •Networks
→ Network performance evaluation.
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1 Introduction and Motivation
The O-RAN (Open Radio Access Network) paradigm divides the

RAN into interoperable components [1], where Extensible Applica-

tions (xApps) deployed inside the Near Real-Time RAN Intelligent

Controller (Near-RT-RIC) provide AI-driven techniques to control

critical functionalities such as network slicing, scheduling, traffic

steering, and interference mitigation [2, 3]. The deployment of AI-

driven xApps inevitably opens the door to AML. Figure 1 illustrates

the system and threat model we consider in this paper. Specifically,

O-RAN transmits sensitive data about network monitoring through
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the E2 interface, which connects the Near-RT-RIC with each of

the Base Stations (BSs) in the network to generate near-real-time

network control decisions [4]. Notably, due to the stringent latency

requirements of the Near-RT-RIC operations, O-RAN specifications

do not encrypt open interfaces such as the E2 [5], which allows at-

tackers to spoof traffic exchange and use the information to design

the attack. These attacks are facilitated by the fact that xApps will

be shared in third-party xApp marketplaces. This allows attackers

to retrieve the AI/ML algorithms embedded in xApps and fine-tune

their attack strategy accordingly.

Prior work has shown that DRL is effective in jointly allocat-

ing radio resources and scheduling users in wireless network [6].

However, AML- related vulnerabilities in DRL-based xApps have

been studied only superficially [7–9]. Specifically, we look beyond

the Radio Access Network (RAN)-level Key Performance Measures

(KPMs) and consider user-level Quality of Service (QoS) metrics

at the application layer. What is still unclear is how effective AML

can be in scenarios characterized by different applications with

diverse QoS requirements at the application level. Optimizing the

network solely on RAN-level metrics is challenging. In addition,

incorporating diverse and often unpredictable application-layer

demands increases such complexity [10].

Service Management 
and Orchestration 

(SMO)
Non-RT RIC

xApps 
Catalog rApps

Adversary  Network operator

Attack 
vector

 xApps Marketplace

near-RT 
RIC

CUs, DUs and RUs

E2

A1

Service Management 
and Orchestration 

(SMO)
Non-RT RIC

xApps 
Catalog rApps

near-RT 
RICxApps

CUs, DUs and RUs

E2

A1

Adversarial Digital Twin Physical O-RAN

xApps

Figure 1: Adversarial machine learning in O-RANs.
Motivating Example. DRL-based xApps are usually designed

with internal reward functions that optimize radio resource usage,

such as spectral occupation and PRB utilization, or ensure optimal

scheduling policy selection. However, these radio-based metrics do

not necessarily correlate with the actual application-layer service

quality experienced by users measured through metrics such as

latency, jitter, or peak throughput. To showcase this, we analyzed

the impact of choosing a different slice-scheduling combination

on the application layer throughput reported by RAN users. We
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configured an eMBB traffic scenario emulating a video-streaming

application traffic of a constant bit-rate of 2 Mbps for four users

sharing the eMBB slice and we analyze two distinct slice-scheduling

actions focusing on two users (User 1 and User 2). The first, Action A,
allocates 36 Physical Resource Blocks (PRBs) using the Proportional

Fair (PF) scheduling algorithm, while the second, Action B, allocates
9 PRBs using Round Robin (RR) scheduling. Empirically, Action A

emerges as a better allocation strategy for eMBB traffic due to its

higher PRB allocation, which enables more efficient bandwidth dis-

tribution and improved throughput sustainability. Figure 2 presents

the Cumulative Distribution Function (CDF) of the throughput col-

lected from the application layer report for both actions for the

two users, and the average downlink bit rate across all slice-users

(slice-avg) collected from BS KPM report. The results indicate a

noticeable throughput degradation when transitioning from Ac-

tion A to Action B for both users. Particularly, User 2 experiences

a considerably higher probability of achieving lower application

layer throughput than the slice average. Interestingly, when ob-

serving only the average network metrics, the impact appears less

pronounced, potentially masking critical individual user perfor-

mance degradations. Application-layer QoS should be considered

to guarantee adequate user-centric performance when designing

robust DRL training strategies.

Figure 2: Impact of slice-scheduling combinations (Action A
and B) on the application-layer throughput for two eMBB
users (User 1 and 2).
Summary of Novel Contributions
•We present AdvO-RAN to analyze the robustness of DRL-based

xApps against state-of-the-art test-time evasion attacks and miti-

gate Service Level Agreement (SLA) violation under such attacks.

AdvO-RAN evaluates the effectiveness of DRL-based xApps by test-

ing their behavior under adversarial perturbations and is designed

to facilitate the development of DRL-based xApps that are robust

and maintain SLA objectives amidst adversarial attacks;

•We consider the case where the adversary obtains a victim xApp

from the O-RAN marketplace, learns an adversarial policy that can

effectively disrupt QoS of different slice-based SLAs, and publishes

a corrupted version of the xApp on the marketplace. This corrupted

xApp executes adversarial test-time attacks based on a predefined

attack strategy while complying with constraints like perturba-

tion limit to avoid detection by the system’s intrusion detection

mechanisms;

•We experimentally evaluate the performance of AdvO-RAN on

the Colosseum network emulator [11]. Our prototype consists of

49 SDR nodes, with 42 designated as User Equipments (UEs) and 7

as BSs. Specified in Section 5, we consider two sets of robust DRL

agents operating under distinct traffic profiles and action modalities.

The results indicate that our threat model generalizes across vari-

ous DRL-based xApps with heterogeneous control strategies and

traffic scenarios. Under adversarial conditions, our robust training

strategy significantly reduces SLA violations – defined as the per-

centage of time a slice’s DRL-based xApps with different modalities

of actions and traffic scenarios. We show that adversarial robust

training reduces SLA violations (i.e., the percentage of time the slice

Key Performance Indicator (KPI) is 70% less than the required value)

from 44% down to 27% under the strongest attacker for URLLC users.

Similarly, for eMBB users, AdvO-RAN reduces SLA violations from

33% to 17% in the worst-case attack. Additionally, AdvO-RAN recov-

ers approximately 46% of the degraded End-to-End (E2E) latency

and up to 75% of the lost throughput.

2 System Model
As illustrated in Figure 3, we consider an xApp performing joint

PRBs slicing and scheduling operations by determining optimal PRB

allocation and scheduling algorithm for each slice. Specifically, the

network slicing policy specifies the number of PRBs that should be

allocated to each slice, while the slice-specific scheduling algorithm

identifies the policy to be used for the UE downlink communication

on each slice among RR, PF and Water Filling (WF).
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Figure 3: Example of DRL-based controller xApp.
Similar to previous work [12, 13], we consider the set C of

|C| = 𝐶 = 3 slices characterized by eMBB, URLLC, and Massive

Machine Type Communications (mMTC) traffic classes, respec-

tively. Each slice is associated with a unique traffic profile and the

xApp’s DRL agent is rewarded following the extent to which it gen-

erates actions that meet the slice-specific performance objectives.

Specifically, the eMBB slice UEs requires a high bit rate to foster

applications such as video streaming or conferencing. The URLLC

slice requires extremely low latency which implies the need for a

low buffer occupancy at the UEs. Lastly, in the mMTC slice, UEs

typically represent Internet of Things (IoT) devices, e.g., small sen-

sors, and should support a massive number of short transmission

requests from several devices. We denote by K the set of KPMs

received via the E2 interface. Specifically, we use |K |=𝐾 =3 KPMs,

namely, transmission bitrate (indicated by 𝑏𝑡𝑥 ), number of trans-

mitted packets (indicated by 𝑝𝑘𝑡𝑡𝑥 ) and size of the downlink buffer

(indicated by 𝑏𝑢𝑓𝑑𝑙 ). The xApp is designed to receive slice-specific

KPMs from the RAN and compute optimal PRB slicing and schedul-

ing policy for each slice relying on a DRL agent (see Figure 3). Once

the control action is generated by the DRL agent, the Near-RT-RIC

implements this control decision in the RAN via the E2 Interface.
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A DRL-controlled xApp is usually represented by a Markov

Decision Process (MDP)M= ⟨S,O,A, 𝑃, 𝑅,𝛾⟩, where S is the state

space, O is the observation space, A is the action space, 𝑃 is the

transition probability function, 𝑅 is the reward function, and 𝛾 ∈
(0, 1) is the discount factor. At each time step 𝑡 , the agent receives

a state representation 𝑠𝑡 ∈ S and an action 𝑎𝑡 ∈ A interacting

with the environment including BSs and slice users. The transition

between two states 𝑠𝑡 → 𝑠𝑡+1 is defined by the transition probability
𝑃 : S × A → Δ(S), where Δ is a function that maps a state-action

pair (𝑠, 𝑎) to a probability distribution over next possible states

𝑠𝑡+1. Based on this action, the agent obtains a reward according to

a reward function 𝑅 : S × A → R. After training, a fixed policy

𝜋 is used by the xApp to take actions based on the RAN state it

receives. Specifically, each time step 𝑡 , the RAN state is composed

of the KPMs combined into a matrix 𝐼 (𝑡) ∈R𝑀×𝐾×𝐶 , where 𝑀 is

the number of measurement reports collected at time step 𝑡 . For

example, if 𝑀 = 10 measurement reports are collected for each

step 𝑡 , the monitored KPMs is 𝐾 = 3, and we have 𝐶 = 3 slices, the

shape of the input matrix 𝐼 (𝑡) becomes 10 × 3 × 3. Now, we denote

by 𝑘 ∈ K = {𝑏𝑡𝑥 , 𝑝𝑘𝑡𝑡𝑥 , 𝑏𝑢𝑓𝑑𝑙 } the KPM index in matrix 𝐼 , and by

𝑚 ∈ {1, . . . , 𝑀} and 𝑐 ∈ {1, . . . ,𝐶} the measurement and slice indices,

respectively. An element of the KPM matrix 𝐼 can then be identified

by 𝑖𝑚,𝑘,𝑐 . Indicating with𝑤𝑐 the slice-specific weight component

of the reward signal, the reward function is formulated as:

𝑅𝑘 (𝑡) =
𝐶∑︁

𝑐 = 1

𝑤𝑐 ·
1

𝑀

𝑀∑︁
𝑚 = 1

𝑖𝑚,𝑘,𝑐 (𝑡). (1)

For the eMBB slice the target KPM is the transmit bitrate, while tar-

get KPM for mMTC and URLLC slices are the number of transmitted

packets and the downlink buffer size respectively. For example, an

action that increases bit rate for eMBB UEs, maximizes the number

of transmitted packets for mMTC, and decreases downlink buffer

occupancy for URLLC UEs UEs generates a high reward as it seeks

to maximize network performance and converge to the optimal

slice/scheduling policies for each slice. By modulating the weights

𝑤𝑡 , the agent is trained to maximize specific objectives for a par-

ticular slice or a global objective for the entire system [13]. In this

work, we consider two agents, namely eMBB-MAX (EM) and uRLLC-
MAX (UM). The former has the objective of maximizing the average

eMBB user throughput using a reward function based on the aver-

age throughput of the slice users. Instead, the uRLLC-MAX (UM)

agent targets the minimization of the latency of URLLC traffic flows

using a reward function inversely proportional to the downlink

buffer metric. Note that, depending on the objective of the agent,

the goal of the adversary also needs to be changed (see Section 4).

As depicted in Figure 3, an encoder block preprocesses the RAN

KPM matrix into a compact latent representation, which serves as

the actual state representation. The input matrix 𝐼 is processed in a

slice-independent fashion, obtaining a latent feature vector for each

slice. In this way, each vector contains the encoded information of

KPMs of each slice. The 𝐶 = 3 latent vectors are then concatenated

to generate the input for the DRL agent. The encoder block is trained

as part of an autoencoder to reduce the dimensionality of the input

matrix as well as removing noise from data, thus facilitating training

and generalization of the DRL agent [14]. After training, only the

encoder is retained and included in the system. The concatenated

latent feature vector is then fed into the DRL agent.

3 Threat Model
We design an evasion attack strategy to a DRL victim agent in the

xApp. In line with recent literature, we consider a worst-case sce-

nario with white-box access to the victim’s policy 𝜋 [15–17]. The

attacker has access only to the victim agent’s model parameters

and can observe its interactions with the environment, but does

not have knowledge of 𝑤𝑐 , the reward function weights. We are

interested in a typical state adversary that perturbs the state obser-

vations (i.e., the concatenated latent representations 𝑠 (𝑡) output by
the encoder) before they reach the agent. Such a state adversary is

modeled by a function ℎ which perturbs the state 𝑠 ∈ S such that

it becomes 𝑠 := ℎ(𝑠). To ensure stealthiness and practicality, we

consider the commonly adopted ℓ𝑝 norm ball as the perturbation.

The perturbation applied to 𝑠 is constrained such that 𝑠 ∈ R𝑛 and

| |𝑠−𝑠 | |𝑝 ≤ 𝜖 , where 𝜖 is perturbation magnitude budget and 𝑛 is the

dimensionality of the states. We make the following assumptions:

(1)Access.We assume the attacker gains unauthorised, time-limited
access to the E2 interface, enabling eavesdropping on control mes-

sages and KPM data—an exposure typical of open O-RAN interfaces

.(2) Knowledge. By downloading a third-party implementation of
the victim xApp from an open marketplace, the attacker can inspect

the code and learn the exact state- and action-space dimensions;

we also assume it knows the encoder architecture used to train the

xApps. (3) Ability. Holding a foothold on the E2 link, the attacker

can intercept ASN.1-encoded messages and replace them with ad-

versarial ones containing perturbed KPMs; ASN.1 structures data

but does not encrypt it. (4) Perturbation budget. Perturbations
are bounded in an ℓ𝑝 ball: ∥𝑠 − 𝑠 ∥𝑝 ≤ 𝜖 . The adversary seeks to

maximise SLA violations while keeping changes small enough to

evade detection. Remark. Anomaly-detection defences on the E2

interface are complementary counter-measures and therefore lie

outside the scope of this work.

4 Design of AdvO-RAN
AdvO-RAN protects DRL agents against different types of attacks

based on the constraints set by the operators (i.e., the traffic profiles,

and perturbation budget). A walk-through of the main operations

of AdvO-RAN is summarized in Figure 4.
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Figure 4: AdvO-RAN workflow.

First, the robust DRL agent constraints set by the operator are

parsed (Step 1 in Figure 4) to extract relevant robust model training

configurations such as perturbation budget, traffic profile/scenario,

estimated reward function parameters for preference based rein-

forcement learning (PbRL) – details in Section 4.1. This configura-

tion is used to set up an adversarial O-RAN environment through



MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Hassan et al.

the ‘DataGen’ module (step 2). The adversarial O-RAN environment

in the context of DRL agent training requires defining an optimal

adversary given a set of constraints (set by the operators) adding

perturbations to the RAN KPM. The DRL agent is robustly trained

(following the steps detailed in Section 4.1) using adversarial state

representations and stored in the xApps catalog (Step 3).

An adversarial dataset (state-action pairs along with correspond-

ing application layer QoS) is collected for training the estimated

reward function for PbRL. From the xApps catalog, trained robust

agents are dispatched to Near-RT RIC (step 4) for deployment,

where they undergo runtime testing (Step 5) within a digital twin.A

channel emulator using real-world cellular traces enables runtime

testing of the robust agent. The analytics module (Step 6) evaluates

performance, revealing how adversarial conditions impact xApp

functionality and system adaptability. Thus, AdvO-RAN proactively

assesses and optimizes DRL-based xApps before live O-RAN de-

ployment, enhancing reliability and robustness.

4.1 Adversarial Robust Training
To effectively train a robust DRL-based xApp, it is essential to

identify the optimal adversarial policy 𝜋𝑎 within the same MDP

environment in which the victim xApp operates. As detailed by

Zhang et al. [17], such an adversary exists within a state-adversarial

Markov Decision Process (SA-MDP), formally defined by the tuple

ˆM = ( ˆS, ˆA, ˆℎ, ˆR, ˆP), whereas the victim xApp is originally trained

in a clean MDPM. In the SA-MDP,
ˆS represents the adversarial

state-space,
ˆA is the adversarial action space and

ˆℎ(𝑠) ∈ 𝑆 charac-

terizes the state perturbation imposed by the adversarial policy, as

discussed in Section 3. To formulate optimal state perturbations, the

adversary learns the state-action transition probabilities
ˆP within

the SA-MDP. Recent state-adversarial threat model approaches,

such as those proposed in [17, 18], adopt adversarial learning strate-

gies that optimize the adversarial policy primarily based on the

victim’s reward function. However, this way, the adversary does

not learn the perturbation policy based on the QoS metrics.

Data-driven Adversarial Reward Modeling: To obtain a reward

estimation based on QoS, we follow the PbRL framework [19] which

does not rely on the ground-truth reward function and is instead

based on learning human intention. As we do not require human in-

tervention, we modify the method by incorporating the application

layer QoS. We consider training policy 𝜋𝜃 with reward function

𝑟𝜓 parameterized by 𝜃 and 𝜓 . The latter provides the abstraction

between QoS and victim DRL state-action transitions.

The first step to train 𝜋𝜃 entails the collection of a dataset D
consisting of state-action sequence pairs noted as (𝜎𝑥 , 𝜎𝑧). Each
sequence 𝜎 = {𝑠𝑡 , 𝑎𝑡 , · · · , 𝑠𝑡+𝑑 , 𝑎𝑡+𝑑 } contains 𝑑 state-action transi-

tions of the victim DRL agents from timestep 𝑡 up to timestep 𝑡 + 𝑑 .
A state-action sequence 𝜎 is obtained by using a random initial state

𝑠𝑡 and collecting the evolution of the MDP representing the xApp.

The initial state 𝑠𝑡 is selected through a random sampling technique

from the set S of input states of the victim’s DRL agent collected

for offline training. Hence, 𝜎𝑥 and 𝜎𝑧 are two possible evolutions

of the system that are then labeled using preference-based labeling.

Specifically, each pair of sequences (𝜎𝑥 , 𝜎𝑧) is associated with a

preference label 𝑦 ∈ {(0, 1), (1, 0)} indicating which segment is pre-

ferred by the attacker based on the application-layer performance

metrics. We follow a data-driven approach to automatically mark

Algorithm 1 Soft actor-critic adversarial reward learning

1: Input: Dataset D, reward model 𝑟𝜓 with initial parameters𝜓 ,

learning rate 𝜂, discount factor 𝛾 , replay buffer 𝐵, number of

gradient steps

2: Initialize: 𝜋𝜃 , 𝑄𝜙 , 𝑟𝜓 , and 𝑄 ¯𝜙

3: for each training epoch do
4: for each batch (𝜎𝑥 , 𝜎𝑧 , 𝑦) ∼ D do
5: Compute preference probability (see Equation (3))

6: Compute cross-entropy loss (see Equation (4))

7: Update𝜓 using gradient descent:𝜓 ← 𝜓 − 𝜂∇𝜓L(𝜓 )
8: for each timestep 𝑡 in both 𝜎𝑥 and 𝜎𝑧 do
9: 𝑟𝑡 ← 𝑟𝜓 (𝑠𝑡 , 𝑎𝑡 )
10: Store transition 𝐵 ← 𝐵 ∪ {𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 }
11: for each gradient step do
12: Sample transitions (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡𝜓 ) ∼ 𝐵
13: Compute target soft value 𝑉 (𝑠𝑡+1) using Equation (6)

14: Update Q-function parameters using Equation (5)

15: Update 𝜋𝜃 using Equation (7)

16: Return: Trained 𝑟𝜓 and 𝜋𝜃

each (𝜎𝑥 , 𝜎𝑧) in the dataset with a preference label. This is done

relying on the application-layer KPMs (i.e., end-to-end throughput,

latency, packet loss, video stuttering count, etc.) which are collected

together with the D dataset. Based on the KPMs, the attacker uses

a thresholding strategy on the SLA violation to determine which

state-action sequence aligns better with its goal and, in turn, asso-

ciates the 𝑦 label to the pair. To do this, we define a binary indicator

function I𝜎 (𝑡) for each time step 𝑡 in a sequence 𝜎 . The function

returns 1 if a SLA violation occurs in that timestep and 0 otherwise.

Hence, we define a SLA violation score for the sequence 𝜎 as

𝑉𝑠𝑙𝑎 (𝜎) =
1

𝑑

𝑡+𝑑∑︁
𝑗=𝑡

I𝜎 ( 𝑗) . (2)

The attacker’s preferred state-action sequence 𝜎 is the one with the

highest SLA violation score. Hence, 𝑦 is set to (0, 1) if 𝑉𝑠𝑙𝑎 (𝜎𝑥 ) >
𝑉𝑠𝑙𝑎 (𝜎𝑧), while if 𝑉𝑠𝑙𝑎 (𝜎𝑧) > 𝑉𝑠𝑙𝑎 (𝜎𝑥 ) the 𝑦 label is set to (1, 0).
In case of 𝑉𝑠𝑙𝑎 (𝜎𝑥 ) = 𝑉𝑠𝑙𝑎 (𝜎𝑧) label is assigned randomly. After

labeling all the entries, the datasetD becomes a set of triplets in the

form (𝜎𝑥 , 𝜎𝑧 , 𝑦). The reward modeling procedure is summarized

in Algorithm 1. The algorithm learns the reward model 𝑟𝜓 which

provides a scalar reward for a given state-action sequence. The

algorithm starts with loading dataset D and initializing the reward

policy 𝜋𝜃 , the reward model 𝑟𝜓 , and the target Q-function 𝑄 ¯𝜙 used

in soft actor-critic learning (lines 1 and 2 in Algorithm 1). The

algorithm iteratively (over different epochs, line 3) updates the

reward model based on the difference between the 𝑦 label and

the preference predicted for the (𝜎𝑥 , 𝜎𝑧) sequence pair. We define

a predictor based on a Bradley-Terry [20] model. Using this, the

probability that sequence 𝜎𝑥 is preferred over 𝜎𝑧 is obtained as

𝑃𝜓 [𝜎𝑥 ≻ 𝜎𝑧] =
exp

∑
𝑡 𝑟𝜓 (𝑠𝑥𝑡 , 𝑎𝑥𝑡 )∑

𝑖∈{𝑥,𝑧} exp

∑
𝑡 𝑟𝜓 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 )

. (3)

After obtaining 𝑃𝜓 [𝜎𝑥 ≻ 𝜎𝑧] (lines 4 and 5 in Algorithm 1) for a

batch of samples in the dataset D, the reward model parameter

𝜓 is optimized to align the preferences with the preference labels

𝑦. To do this, we minimize the cross-entropy loss L(𝜓 ) between
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the prediction 𝑃𝜓 [𝜎𝑥 ≻ 𝜎𝑧] and preference label 𝑦 as (line 6 in

Algorithm 1), which is formulated as

L(𝜓 )=−E(𝜎𝑥 ,𝜎𝑧 ,𝑦)∼𝐷


∑︁
𝑖∈{𝑥,𝑧}

𝑦 (𝑖) log 𝑃𝜓

[
𝜎𝑖 ≻𝜎 {𝑥,𝑧}\{𝑖 }

] . (4)

The gradient descent algorithm is used to update𝜓 based on the loss

in Equation (4) (line 7, where 𝜂 is the learning rate). Hence, for each

timestep 𝑡 in the 𝜎 sequences, we compute the estimated reward

𝑟𝜓,𝑡 and store the transitions in buffer 𝐵 (lines 8-10). Following

the approaches in work [21], we train a soft actor-critic policy

𝜋𝜃 using reward 𝑟𝜓 . The critic Q-function 𝑄𝜙 parameterized by 𝜙

is optimized by reducing the Bellman residual with a state value

function 𝑉 (.) and the estimated reward 𝑟𝑡 . Specifically, for each

transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) sampled from buffer 𝐵 the Bellman residual

is obtained as

𝐽𝑄 (𝜙) = E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1 )∼𝐵

[(
𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 ) − 𝑟𝑡 − 𝛾𝑉 (𝑠𝑡+1)

)
2

]
, (5)

where the state value function 𝑉 (.) is obtained accounting for the

target soft Q-value function parameterized by
¯𝜙 as

𝑉 (𝑠𝑡 ) = E𝑎𝑡∼𝜋𝜃
[
𝑄 ¯𝜙 (𝑠𝑡 , 𝑎𝑡 ) − 𝜇 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

]
. (6)

Finally, the reward policy 𝜋𝜃 is updated by minimizing the loss

function 𝐽𝜋 (.) formulated as

𝐽𝜋 (𝜃 ) = E𝑠𝑡∼𝐵,𝑎𝑡∼𝜋𝜃
[
𝜇 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) −𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 )

]
. (7)

This way, AdvO-RAN captures the state-action pairs that cause

maximum SLA violations while learning reward 𝑟𝜓 and policy 𝜋𝜃 .

Training an adversary for state-space perturbation:After train-
ing the preference-based reward model 𝑟𝜓 and the aligned policy

𝜋𝜃 using Algorithm 1, the next step is to train an adversarial state-

space perturbation functionV(𝑠), where 𝑠 ∈ S is the actual latent

state representation. The function V(𝑠) outputs a perturbation

vector that modifies the state as 𝑠 =𝑠 + V(𝑠), with the constraint

that the perturbation magnitude is bounded by a perturbation mag-

nitude budget 𝜖 > 0, i.e., ∥V(𝑠)∥𝑝 ≤ 𝜖 , where ∥ · ∥𝑝 denotes the

ℓ𝑝 norm. The objective is to perturb the input state such that the

victim xApp’s policy, denoted by 𝜋v produces actions that closely

mimic the behavior of the attacker’s preference-aligned policy 𝜋𝜃 ,

when evaluated on the perturbed state 𝑠 . To this end, the adver-

sary is trained to maximize the cumulative reward given by the

learned preference-based reward function 𝑟𝜓 , while ensuring that

the perturbations remain within the norm ball defined by 𝜖 (see

Section 3). The adversary is therefore optimized to maximize the

expected cumulative reward using the learned reward model, i.e., it

maximizes the function

J (𝑠𝑡 ;𝜔)=E𝑠∼D𝜔

[
𝑇∑︁
𝑡=0

𝛾𝑡 · 𝑟𝜓
(
𝑠𝑡 + V𝜔 (𝑠𝑡 ), 𝜋v (𝑠𝑡 + V𝜔 (𝑠𝑡 ))

)]
, (8)

where D𝜔 is the distribution of latent states collected from the

environment, 𝑇 is the episode length and 𝛾 ∈ (0, 1) is the discount
factor that controls the importance of future rewards. The adversary

aims to find the parameters𝜔 that maximize this cumulative reward.

To enforce the perturbation constraint, we introduce a penalty term

that increases the loss when the norm of the perturbation exceeds

the budget set by the ℓ𝑝 ball following equation:

Lpen (𝑠𝑡 ) = 𝜆 · E𝑠𝑡∼D𝜔

[
max

(
0, ∥V𝜔 (𝑠𝑡 )∥𝑝 − 𝜖

) ]
, (9)

where 𝜆 > 0 is a regularization coefficient to penalize the con-

straint. Additionally, to explicitly align the behavior of the victim

policy 𝜋v on the perturbed states with the preference-based policy

𝜋𝜃 we introduce a sequence-level imitation loss using the Kull-

back–Leibler (KL) divergence between 𝜋v (𝑠𝑡 ) and 𝜋𝜃 (𝑠𝑡 ) action
probability distributions:

LKL (𝑠𝑡 ) = 𝛽 · E𝑠𝑡∼D [𝐷KL (𝜋v (𝑠𝑡 + V𝜔 (𝑠𝑡 )) ∥ 𝜋𝜃 (𝑠𝑡 ))] , (10)

where 𝛽 > 0 is a weighting factor that controls the strength of this

imitation loss. Overall, the loss used to trainV𝜔 is a combination

of the three components introduced above in Equations 8, 9, 10, i.e.,

L(𝑠𝑡 ;𝜔) = J (𝑠𝑡 ;𝜔) + Lpen (𝑠𝑡 ) + LKL (𝑠𝑡 ). (11)

We minimize L(𝜔, 𝑠𝑡 ) using stochastic gradient descent with Adam

optimizer. The perturbation functionV𝜔 is modeled as a fully con-

nected neural network with input size equal to the dimension of the

concatenated latent features 𝑠 ∈ S and the output is a perturbation

vector 𝛿 = V(𝑠) of the same dimension.

Optimized training for robustness: Finally, to achieve robustness
with a policy that can counter the effect of adversaryV , we follow

the approaches in ATLA-PPO [22], a generalized training frame-

work that employs an alternating training approach. Algorithm 2

describes the robust training method with a fixed adversary.

Algorithm 2 Robust training with fixed adversary

1: procedure AdvTraj(V𝜔 , 𝑟𝜓 , 𝑏, 𝜋𝜏 )
2: Initialize empty dataset D𝜋
3: for 𝑖 = 0 to 𝑏 do
4: Sample a starting state 𝑠0 ∼ 𝑝 (𝑠)
5: for 𝑡 = 0 to 𝑇 do
6: Compute perturbation 𝛿𝑡 = V𝜔 (𝑠𝑡 )
7: Compute perturbed state 𝑠𝑡 = 𝑠𝑡 + 𝛿𝑡
8: Sample action 𝑎𝑡 ∼ 𝜋𝜏 (·|𝑠𝑡 )
9: Execute 𝑎𝑡 and get next state 𝑠𝑡+1
10: Compute reward 𝑟𝑡 = 𝑟𝜓 (𝑠𝑡 , 𝑎𝑡 )
11: Append transition (𝑠𝑡 , 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) → D𝜋
12: return D𝜋
13: Input: Robust policy 𝜋𝜏 , adversaryV𝜔 , number of iterations

𝑁iter, batch size 𝑏.

14: for 𝑖 = 1 to 𝑁iter do
15: D𝜋 ← AdvTraj(V𝜔 , 𝑟𝜓 , 𝑏, 𝜋𝜏 )
16: Compute advantage estimates:
17: for (𝑠𝑡 , 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) ∈ D𝜋 do
18: Compute return using Equation (1): R𝑡 =

∑𝑇
𝑡=0

𝛾 𝑅(𝑡)
19: Estimate value 𝑉 (𝑠𝑡 )
20: Compute advantage 𝐴𝑡 = R𝑡 −𝑉 (𝑠𝑡 )
21: Compute PPO loss LPPO using Equation (12)

22: Compute robust loss Lentropy Equation (13)

23: Update 𝜋𝜏 using stochastic gradient descent

24: return 𝜋𝜏

The input of the algorithm contains robust policy we intend

to train 𝜋𝜏 parametrized by 𝜏 , the adversary V𝜔 , the number of

iterations 𝑁iter, and the batch size 𝑏. During each iteration, a batch

of 𝑏 perturbed trajectory is generated using the AdvTraj procedure

(lines 1-12 in Algorithm 2). The procedure starts by initializing an
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empty replay buffer D𝜋 (line 2) that is populated iterating over

batches of𝑏 samples (line 3), starting from a random starting state 𝑠0
sampled from the state distribution 𝑝 (𝑠) (line 4). For each time step 𝑡

(line 5 in Algorithm 2), we first compute the adversarial perturbation

𝛿𝑡 using a fixed, pretrained V𝜔 , which takes the clean state 𝑠𝑡
as input (line 6). The resulting perturbed state is then obtained

as 𝑠𝑡 = 𝑠𝑡 + 𝛿𝑡 , simulating the effect of corrupted or adversarial

observations (line 7). Using this perturbed state, the robust policy

𝜋𝜏 samples an action 𝑎𝑡 according to its current policy distribution

(line 8). The action 𝑎𝑡 is then executed in the environment (line

9), and the next state 𝑠𝑡+1 is observed. A reward 𝑟𝑡 is generated

using the learned preference-based reward model 𝑟𝜓 , which reflects

application-layer feedback. Finally, the full transition sequence

(𝑠𝑡 , 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) is stored in the replay buffer D𝜋 (line 11). This

process is repeated for each timestep and sequence, and once all

trajectories are collected, the buffer D𝜋 is returned (line 13).

By using the AdvTraj procedure, we collect a batch of perturbed

trajectories using the current robust policy 𝜋𝜏 and reward model

𝑟𝜓 . Next, the algorithm estimates the advantage function 𝐴𝑡 =

𝑅𝑡 − 𝑉 (𝑠𝑡 ) for each timestep in the collected transitions (line 20

in Algorithm 2). This involves computing the discounted return

𝑅𝑡 =
∑𝑇
𝑡=0

𝛾 𝑅(𝑡) (line 18) and subtracting the estimate value 𝑉 (𝑠𝑡 )
(line 19). Once the advantages are computed, we evaluate the PPO

surrogate loss (line 21) where the objective is to maximize a clipped

policy improvement to ensure stable updates, i.e.,

LPPO (𝜏) = E(𝑠,𝑎)∼D𝜋

[
min

[
𝜌𝑡 (𝜏)𝐴𝑡 ,

clip

(
𝜌𝑡 (𝜏), 1 − 𝜖clip, 1 + 𝜖clip

)
𝐴𝑡

] ]
.

(12)

Hence, the robust loss is computed by adding an entropy regular-

ization term to the PPO loss to encourage policy stochasticity and

exploration (line 22). Mathematically, the robust loss is obtained as

L
robust

(𝜏) = LPPO (𝜏) − 𝜂ent · E𝑠∼D𝜋
[H [𝜋𝜏 (·|𝑠)]] , (13)

where the termH[𝜋𝜏 (·|𝑠)] denotes the entropy of the action distri-

bution under the policy given the perturbed state 𝑠 . The term 𝜂𝑒𝑛𝑡
is a hyperparameter that controls the strength of the entropy reg-

ularization term. The term 𝜌𝑡 (𝜏) = 𝜋𝜏 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜏𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )

is the importance

sampling ratio between the new and old policy probabilities for

action 𝑎𝑡 . This robust loss is minimized over each iteration using a

stochastic gradient descent algorithm and the policy 𝜋𝜏 is updated

accordingly (line 23). After training the 𝜋𝜏 in this way, we obtain a

robust agent with a policy that is resilient to adversarial perturba-

tions generated byV(𝑠). This policy enables the agent to maintain

adequate slice-level performance under adversarial conditions.

Although the Bradley–Terry model transforms each sequence

pair (𝜎𝑥 , 𝜎𝑧) into the probability 𝑃𝜓 [𝜎𝑥 ≻ 𝜎𝑧] in Eq. (3), it as-

sumes the associated label is correct and weights every observation

equally. Thus, mislabeled or extreme-reward pairs may still influ-

ence the maximum-likelihood fit, as the model offers no guarantee

of statistical robustness to such outliers.

5 AdvO-RAN Experimental Evaluation
We prototyped AdvO-RAN on the Colosseum network emulator [12,

23]. We utilized the ColO-RAN and SCOPE frameworks [24] which

allow simulating realistic O-RAN deployments. We benchmarked

AdvO-RAN in multiple network scenarios comprising 7 BSs, each

serving 6 UEs, along with O-RAN components such as the Near-

RT-RIC and xApps interfaced with BSs via the E2 interface. BSs

and UEs are implemented as Linux Containerss (LXCs). Specifi-

cally, we conducted our experiments using the SCOPE Rome Urban

scenario, where BS placement reflects real cell deployments from

the OpenCellID database [25]. Traffic generation is handled by the

Multi-Generator (MGEN) tool, which allows emulating different

traffic profiles and capturing application-layer metrics at the UE

side for each transmitted packet.

We considered two traffic profiles (TP1 andTP2) associated with
different agents’ action modalities. In TP1, we consider an agent

that allocates a total of 50 PRBs for a 10 MHz channel across the

slices and also selects the scheduling policy for each slice. The max-

imum application data rate for eMBB, mMTC and URLLC users in

TP1 emulation is set to 4 Mbps, 44 kbps and 89.3 kbps, respectively.

An agent that only selects the scheduling policy while keeping the

PRBs allocation fixed for a 3 MHz channel is instead considered

for TP2. The maximum application data rate for eMBB, mMTC and

URLLC users in TP2 emulation is set to 1 Mbps, 30 kbps and 10 kbps

respectively. The agent’s actions are applied through SCOPE. Obser-

vations for the agent are generated by periodically sampling data

reflecting the most recent 250 ms of network activity, correspond-

ing to a single timestep in the environment. For training purposes,

we define each episode to span 10 timesteps. We employ a Proximal

Policy Optimization (PPO) to train each victim model. The actor

and value networks are composed of 5 fully connected layers each,

with 30 neurons, using the hyperbolic tangent (tanh) activation
function. The agent is trained using a learning rate of 1e−3 and a

replay buffer batch size of 64. The discount factor 𝛾 is set to 0.1, and

Generalized Advantage Estimation (GAE) is leveraged to reduce

variance. Entropy regularization is applied with a coefficient of 0.1

to encourage exploration and an importance ratio clipping of 0.2

is used to stabilize policy updates. Regarding SLA violation and

E2E metric comparison, we choose 2 PRBs for the eMBB slice and 4

PRBs for the URLLC slice to generate a resource-constrained traffic

scenario for eMBB users.

5.1 Attack and Robust Training Baselines
We consider three baseline attacks in addition to our perturbation

strategy. The four approaches are first compared to assess their

attack power and then used to evaluate AdvO-RAN robust training.

• Random Attack (RA): Perturbations are uniformly sampled

within an 𝐿2-norm ball of radius 𝜖 centered around the state space;

•Worst-Action Attack (WA): In this attack – introduced in [16]

– the adversary perturbs the state by following the sign of the

gradient of the loss between the victim policy and an alternative

policy that always selects the least likely action (i.e., the action with

the lowest probability under the victim’s current policy). We set

𝑝 = ∞ for ℓ𝑝 -norm to generate perturbation noise in the input state

following the original implementation;

• Policy Adversarial Actor Director Attack (PA-AD): It is a
two-stage procedure involving a director and an actor. The director

solves an MDP to identify the most effective gradient direction to

perturb the xApp observations. The actor then executes a gradient-

based adversarial attack — aligned with the direction suggested
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by the director — to generate the perturbation [18]. We use Pro-

jected Gradient Descent (PGD) in [26] as a perturbation generation

method with 20 iterations. We set 𝑝 =2 for ℓ𝑝 -norm based PGD to

find the perturbation direction;

•Adv-ORANAttack (AO): It leverages the perturbation generated
by our AdvO-RAN framework. We perform a comprehensive grid

search to tune its hyperparameters and observe optimal attack

performance with a learning rate of 𝜂 = 10
−3

and a loss coefficient

ratio of 𝛽/𝜆 = 0.2 between the KL divergence loss (Equation (10))

and the penalty loss (Equation (9)). All trainable components are

optimized using Adam. For the data-driven adversarial reward,

we evaluate different state-action sequence segment lengths 𝑑 ∈
{1, 2, 5, 10} and find that 𝑑 = 10 yields the fastest convergence.

In addition, we compare our AdvO-RAN robust training approach

with the following two state-of-the-art strategies:

• RADIAL-PPO [27]: This method modifies the PPO objective

using an additional adversarial loss term. The goal is to reduce

the sensitivity to input perturbation. It defines a worst-case pol-

icy distribution by explicitly shifting probability mass away from

the optimal policy. The adversarial loss term is defined as the ex-

pected clipped PPO loss between the original and worst-case policy

distributions under perturbations;

• SA-PPO [28]: This framework trains PPO agent integrating a

robust regularizer term in the policy optimization phase derived

from the SA-MDP framework. This approach explicitly models the

presence of worst-case perturbations in the state observations and

penalizes policies that are overly sensitive to such attacks.

While these prior methods use the environment’s native reward,

our method introduces perturbations in the state space guided by a

preference-based reward function, thus allowing for more targeted

and context-aware adversarial behavior.

5.2 Evaluation Metrics
To understand the E2E impact of AdvO-RAN robust training we

considered two application layer metrics: E2E throughput (mea-

sured in bit per second, [bps]) and E2E latency (in seconds, [s]).

These metrics are collected on the user side during each experiment

using MGEN traffic. For eMBB slice users, the E2E throughput rep-

resents the most significant metric that should be sufficiently high

to support applications such as video streaming. For URLLC users,

the key performance-related aspect is captured by the E2E latency

as URLLC communication demands strict delay bounds to ensure

timely and deterministic message delivery. At the medium access

control (MAC) layer we collect information about the slice PRBs and

scheduling algorithm for the users to determine resource allocation

strategy under attack and during robust agents operation.

Using these metrics, we assess SLA violations under two con-

ditions: static and dynamic thresholds. In the static SLA scenario,

a violation occurs when the system delivers less than 70% of the

predefined E2E performance target. For the eMBB slice, this cor-

responds to receiving less than 70% of the target E2E throughput

(4 Mbps for TP1 and 0.7 Mbps for TP2), while for the URLLC slice,

it corresponds to E2E latency exceeding 70% of the latency bounds

(5ms for TP1 and 10ms for TP2). In the dynamic SLA scenario,

we capture traffic demand variability by sampling the expected

performance level at each time step from a Gaussian distribution

(a) Traffic profile TP1.

(b) Traffic profile TP2.
Figure 5: Normalizedmean reward per episode under varying
perturbation budgets. The lines show medians, shaded areas
show variance.

(a) EM agent, static SLA. (b) UM agent, static SLA.

(c) EM agent, dynamic SLA. (d) UM agent, dynamic SLA.
Figure 6: Median SLA violations of AdvO-RAN (AO) and base-
line attacks compared with the no-attack (NA) scenario.

N(0.7, 0.22). A violation is detected if the system fails to meet 70%

of the sampled throughput target for eMBB, or if the latency ex-

ceeds 70% of the sampled latency bound for URLLC. SLA violations

are evaluated over non-overlapping 5-second windows throughout

the simulation.

5.3 Experimental Results
In the following, we assess the effectiveness of AdvO-RAN in train-

ing robust PPO agents the previously defined metrics.

Perturbation budget hyperparameter selection: We used per-

turbation budget 𝜖 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Figure 5 presents the
normalized average reward per episode over 1 million training

steps for robust agents trained under each perturbation level. In the

TP1 traffic scenario (Figure 5a), 𝜖 =0.3 yields the highest average

reward, indicating more effective robustness. For TP2 (Figure 5b),

both 𝜖 = 0.2 and 𝜖 = 0.3 result in comparable performance, with

𝜖 =0.3 slightly outperforming over longer training durations. Based

on these findings, we select 𝜖 =0.3 as the perturbation budget for

all subsequent evaluations.
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SLA violation under different attacks: Figure 6 compares the

median SLA violation of the AdvO-RAN attack (AO) and the base-

line attacks presented in Section 5.1. A no-attack baseline (NA) has

been included to quantify performance under benign conditions.

Downlink traffic flows are simulated for 600 seconds, during which

SLA violations are recorded according to the definitions provided

in Section 5.2 for the EM and UM agents in static and dynamic

SLA scenarios. Each attack scenario is executed for 10 iterations,

and the median SLA violations is reported. The results in Figure 6

show that the UM agent is significantly more vulnerable than the

EM agent under adversarial attacks. For example, in static SLA

settings (Figure 6b), the UM agent experiences the highest SLA

violation rate of approximately 44% under the AdvO-RAN attack

for traffic profile TP2, compared to around 40% for WA and slightly

less for PA-AD. Instead, the EM agent in the static SLA scenario

(Figure 6a) maintains SLA violations below 25% across all attacks,

demonstrating higher robustness compared to the UM agent. A

similar pattern is observed in the dynamic SLA scenario. The UM

agent (Figure 6d) suffers maximum SLA violations under the AO

attack, reaching around 44% in TP2, while the EM agent (Figure 6c)

limits SLA violations to below 30% even under the strongest attack

(WA). Noticeably, our new AO attack leads to consistently higher
SLA degradation compared to the RA, WA, and PA-AD baselines

across all scenarios, especially when considering the UM agent. Fur-

thermore, the TP1 scene consistently exhibits lower SLA violations

than TP2 across all attacks and agent types, indicating that TP1

provides larger discrete action space as the agent can select both

the allocation and scheduling policy, enabling higher robustness

and thus reducing SLA violations. In contrast, in TP2 the agent’s de-

cision space is limited as it only selects the scheduling policy. This

makes it more susceptible to well-crafted attacks like AO. These

results confirm that agents operating under resource-constrained

spaces (like TP2) are more susceptible to adversarial perturbations.

To summarize, (i) The AO (AdvO-RAN) attack induces the highest

degradation in both throughput and latency; (ii) TP2, associated

with a smaller action space, is significantly more vulnerable under

AO than TP1; (iii) TP1 demonstrates stronger resilience due to its

higher action space, maintaining relatively stable performance even

under attack; (iv) WA and PA-AD show moderate impact on the

SLA violation, while RA is the least disruptive.

SLA violation under different robust training approaches.
Figure 7 compares the effectiveness of AdvO-RAN (AOD) in the

figure) and the other baseline robust training methods in reducing

the SLA violation rates when the robust agents are attacked with

the AdvO-RAN (AO) attack. The results are presented for both

EM and UM agents under static and dynamic SLA scenarios. As

shown in the figure, AdvO-RAN maintains SLA violation rates

closer to the NA scenario than other robust training baselines.

Under dynamic SLA conditions for EM agents (Figure 7c), the no-

attack violation rate for TP1 is 13%, while AODmaintains violations

at 15%. In contrast, SA-PPO and RADIAL result in violations of 23%

and 24%, respectively, introducing a much larger gap of 10–11%.

Similar trends are observed in TP2, where AOD reduces violations

to 17–19%, while the baseline agents remain above 22-25%. For

UM agents (Figure 7d & 7b), AOD does not perform as closely to

the no-attack scenario as it does for EM agents, particularly in

(a) EM agent, static SLA (b) UM agent, static SLA.

(c) EM agent, dynamic SLA. (d) UM agent, dynamic SLA.
Figure 7: Median SLA violations of AdvO-RAN robust agent
and baseline robust training methods when the AdvO-RAN
(AO) is in place compared with the no-attack (NA) situation.

TP2 under dynamic SLA. However, it still achieves improvements

over the baselines, reducing SLA violations by up to 24% compared

to SA-PPO and RADIAL. Overall, AOD remains effective across

both static and dynamic SLA conditions, outperforming baselines

with lower violations under adversarial attacks. Comparing the

worst SLA violations observed in Figure 6b with the corresponding

recovery shown in Figure 7b,we can observe that AdvO-RANmethod
reduces SLA violations from 44% to 27% under the static and 41% to
19% in dynamic SLA scenario for TP2 traffic profile.

End-to-End Throughput and Latency: Complementing the

SLA improvements, AdvO-RAN (AOD) also substantially enhances

E2E application-layer performance, compensating for the degra-

dation introduced by the AdvO-RAN (AO) attack. Figure 8 shows

that our proposed AO attack reduces the median E2E through-

put of eMBB slice users by 8% in TP1 and 45% in the TP2 traffic

scenario—representing the highest degradation among all base-

line attacks compared to the no-attack (NA) case. Analyzing Fig-

ures 8 and 9, we observe that AdvO-RAN (AOD) improved the E2E

throughput by 3.33% and 75% compared to the worst-case attack

scenario (AO) in TP1 and TP2 respectively. Similarly, for the URLLC

slice agent (UM), the AdvO-RAN attack (AO) increases latency by

20% in TP1 and 91% in TP2 when compared to the NA case (see

Figure 10a). Under the same AO attack environment, AdvO-RAN

(AOD) robust training reduces the median latency by 15% in TP1

and 46% in TP2 (see Figure 10b).

AdvO-RAN in resource-constrained scenarios. To validate the

effectiveness of AdvO-RAN in robust training under resource con-

strained conditions, we used TP2, in a single action modality (sched-

uling only with fixed PRBs per slice), chosen for its ease of visu-

alizing the action distribution. In Figure 11 presents the schedul-

ing policy distributions over 20 runs under three conditions: NA,

AdvO-RAN (AO) attack, and AdvO-RAN (AOD) robust agent with

AdvO-RAN (AO) attack. When the slice is provisioned with abun-

dant resources (PRB=8), the agent predominantly selects the WF
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(a) Traffic profile TP1. (b) Traffic profile TP2.

Figure 8: End to End throughput, different attacks (EM agent).

(a) Traffic profile TP1. (b) Traffic profile TP2.
Figure 9: End to end throughput, different robust training
approaches (EM agent).

(a) Attack comparison. (b) Robust agent comparison
Figure 10: End to End latency under different attacks and
using different robust training approaches for the UM agent.

policy for all users. In contrast, under limited PRB availability, the

agent tends to favor the PF policy to ensure fairness and compen-

sate for PRB scarcity. From Figure 11a, under attack the victim

agent allocates policy RR more (14.56%) than in the NA condition

(4.0%). AOD robust training reinstates this behavior of the agent

and reduces the RR allocation to just 4.6%. Similarly, Figure 11b

shows, AOD consistently reduces RR allocation, often replacing

it with more effective scheduling strategies (PF). Notably, when

the slice receives larger PRB allocation (PRB=8), AOD reduces RR

usage from 12.55% to 1.33% in the URLLC slice, and from 13.05% to

0.02% in the eMBB slice.

Scaling factor. The encoder processes a fixed-length slice-level

metric vector. If 𝑁UE denotes the total number of user equipments

and 𝑁BS denotes the total number of base stations, its per-BS pro-

cessing cost is constant and the aggregate latency grows as (𝑁BS)
while remaining 𝑂 (1) with respect to 𝑁UE. Because the attacker’s

and defender’s policies take a single latent representation per BS

(a) UM agent scheduling policy
distribution for URLLC slice

(b) EM agent scheduling policy
distribution for eMBB slice

Figure 11: Comparison of EM agent scheduling policy distri-
butions across fixed slices (UM and eMBB) with TP2.

in each batch, their forward-pass complexity follows the same

𝑂 (𝑁BS) trend, ensuring that the combined encoder–policy delay

stays within the near-real-time control window.

6 Related Work
Security in O-RAN. Despite progress in machine learning (ML)-

based RAN control, the cyber threats and privacy risks to ML-

driven xApps, rApps, and closed-loop O-RAN system are largely

unexplored. The 11 Working Groups of the O-RAN Alliance have

identified key ML-related security issues in the near-RT RIC archi-

tecture, relevant interfaces, xApps, and APIs [29]. Although prior

work – see survey [30] – provides a detailed review of security

and privacy risks in O-RAN, it lacks a comprehensive analysis and

validation of how these threats could be executed. This gap un-

derscores the need for further research and practical validation to

enhance the security of O-RAN.

ML-Based xApps. Existing xApps use RNNs [31], DRL [32], and

CNN-based spectrogram detectors [33], all trained on RAN data

via the E2 Interface. However, none address security threats like

data poisoning or intrusion that could disrupt the control loop and

degrade performance. Hence, O-RAN benchmarking frameworks

like AdvO-RAN are essential for training and testing DRL models to

ensure robust xApps perform reliably in adversarial environment.

Adversarial DRL. The vulnerability in DRL has been explored

in [15], where the authors proposed a method to uniformly at-

tack the state space. Additional state-space attacks and defense

strategies mostly assume white-box settings [34, 35]. A number of

black-box approaches [36] attempt to infer agent action sequences

to identify optimal attack points.In [37] the authors constrained

the action space by spatio-temporal criteria and showed vulnera-

bilities in cyber-physical systems [38] and temporally perturbed

both action and state space [37]. Existing adversarial approaches

primarily focus on degrading the victim agent’s reward, which may

result in suboptimal attacks in the context of O-RAN, where the

primary objective of the network is to provide better QoS rather

than maximizing reward.

7 Limitations and Future Work
Our study has several limitations as follows: (1) To adapt to a

new traffic patterns, the DRL agents in the xApps should be re-

trained or fine-tuned with the updated KPM distributions. Simi-

larly, the attacker must realign its policy with the fine-tuned slicing

agent. (2) Our reward design assumes fixed, noise-free SLA thresh-

olds when deriving preference labels. In practice, these thresholds

can drift or become noisy as traffic pattern changes, potentially

mis-aligning the learned preferences. Developing attacker and de-

fender policies that remain reliable under dynamic or noisy SLAs

is a promising direction for future work.
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8 Concluding Remarks
We presented AdvO-RAN, a framework to mitigate adversarial

threats to DRL-based xApps in AI-driven O-RAN. AdvO-RAN uses

preference-based reward modeling to strengthen SLA compliance

and provides an O-RAN-compliant platform for developing, train-

ing, and benchmarking xApps under evasion attacks. Prototyped

on the Colosseum emulator, AdvO-RAN reduced SLA violations

from 44% to 27% on average, reduce latency by up to 46% under the

strongest attacks, and recovered up to 75% of median end-to-end

eMBB throughput in the most challenging scenarios.
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