
FlexRFML: Dynamic Neural Networks on FPGAs for
Next-Generation Radio Spectrum Perception

Francesco Pessia, A.Q.M. Sazzad Sayyed and Francesco Restuccia
Northeastern University, United States

Abstract
Enabling spectrum perception with deep neural networks (DNNs)
directly connected to the radio front-end is of fundamental impor-
tance to realize next-generation spectrum-aware wireless systems.
As such, low-latency DNN inference in reconfigurable hardware
such as Field Programmable Gate Arrays (FPGAs) is a necessary
precursor to enable spectrum perception in real-world wireless
systems. The key issue with existing work is that it considers DNNs
that have fixed weights and architecture. On the other hand, it has
been shown that dynamically changing the structure and weights of
the DNN at runtime can lead to improved efficiency and adaptabil-
ity. This work fills the current research gap by proposing FlexRFML,
the first framework to integrate dynamic DNNs in the RF-front
spectrum perception loop. FlexRFML includes High-Level Synthesis
(HLS)-based design as well as customized circuits to achieve dy-
namic hardware reconfiguration and accelerate the DNN. We have
prototyped FlexRFML on a Xilinx system-on-chip (SoC) ZCU102 by
considering both modulation recognition and radio fingerprinting
classification problems where the DNNs are dynamically adapted
based on a preliminary classification of the input. Experimental
results show that FlexRFML can decrease the inference latency by
up to 35.6% with respect to static DNN inference with negligible
additional hardware overhead. We pledge to release the FlexRFML
hardware and software code.

CCS Concepts
• Computer systems organization → Real-time systems; •
Hardware → Hardware-software codesign.

Keywords
Edge Computing, Adaptive Inference, Neural Networks, FPGA.

ACM Reference Format:
Francesco Pessia, A.Q.M. Sazzad Sayyed and Francesco Restuccia. 2025.
FlexRFML: Dynamic Neural Networks on FPGAs for Next-Generation Radio
Spectrum Perception. In International Symposium on Theory, Algorithmic
Foundations, and Protocol Design for Mobile Networks and Mobile Computing
(MobiHoc ’25), October 27–30, 2025, Houston, TX, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3704413.3764472

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiHoc ’25, October 27–30, 2025, Houston, TX, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1353-8/25/10
https://doi.org/10.1145/3704413.3764472

1 Introduction and Motivation
The radio spectrum is a finite natural resource that lies at the founda-
tion of wireless communications. The fast-paced rise of the Internet
of Things (IoT), projected to reach 50B by 2030 [1], will exacerbate
the spectrum crunch in the years to come [9]. Techniques such
as spectrum sharing and dynamic spectrum access through deep
neural networks (DNNs) have demonstrated their effectiveness in
enhancing spectrum utilization [26], radio fingerprinting [23] and
automatic modulation recognition [20], just to name a few [12]. To
obtain actionable knowledge, the DNNs must perform real-time
inference on I/Q samples with latency in the order of microsec-
onds or below [25], which implies that any computation needs
to be implemented directly in the radio frequency (RF) process-
ing chain. Sub-milliseconds inference on local low-power devices
enables ML-driven optimizations of the network protocol stack
based on temporarily relevant spectrum information, enhancing
its utilization in the next generation of radio sensing devices. As
such, graphic processing units (GPUs) and similar software-based
accelerators cannot be used for radio spectrum perception.

To tackle this issue, the concept of “learning-in-the-RF-loop” has
been recently proposed to achieve real-time spectrum perception
by implementing DNNs in the reconfigurable radio hardware of
wireless devices, thus significantly decreasing latency with respect
to software-based inference [24]. The key issue is that existing
work considers the case of static DNN inference. However, prior
work has shown that dynamic neural networks (DyNNs) can lead to
significant performance improvement. Critically, DyNNs specialize
the DNN computation at inference time according to a preliminary
characterization of the input, thus improving efficiency, adaptabil-
ity, security and interpretability [11]. The top portion of Figure 1
shows an example of a static DNN trained to performed modulation
recognition. To withstand different Signal-to-Noise-Ratio (SNR) lev-
els, and a DyNN in spectrum perception applications, decreasing
the DNN complexity in case of favorable channel conditions – i.e.
high SNR – may lead to a decrease in inference latency.

DNN
Output

DNN
Output

SNR
Inference

DNN
Input

DNN
Input

High SNR
DNN

Figure 1: Static DNN (top) vs Dynamic DNN (bottom).

https://doi.org/10.1145/3704413.3764472
https://doi.org/10.1145/3704413.3764472

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Francesco Pessia, A.Q.M. Sazzad Sayyed and Francesco Restuccia

To support the rapid design and development of DyNNs, Field
Programmable Gate Arrays (FPGAs) prototypes serve as essential
precursors before large-scale production in the form of low-power
application-specific integrated circuits (ASICs). Existing work on
FPGA-based DyNNs acceleration – discussed in details in Section
4 – mainly focuses on early-exit DNNs [4, 8] as well as DNN with
adaptive computation precision [16]. The former reduces latency
by leveraging intermediate classifiers, called exiting points, while
the latter dynamically switches between low and high-precision
quantized version of the same accelerator. Dynamic pruning ar-
chitectures where a run-time manager adaptively selects the most
suitable pruning rates according to the workload have also been
proposed [15]. However, these approaches resort to partial recon-
figuration of the FPGA fabric, which incurs excessive latency – up
to 42 ms [8] – and is not sustainable for ASICs. On the other hand,
as shown in Figure 1, reconfiguring the DNN without modifying
the FPGA fabric can enable fine-grained customized computation.

The key challenges in achieving a dynamic pruning architec-
ture without relying on partial reconfiguration are: (i) designing a
flexible data path from the input I/Q to the sub-DNNs and (ii) au-
tomating the selection and execution of the appropriate sub-DNN.
The latter, in particular, requires an accelerator capable of efficiently
executing sub-DNNs using dynamic convolutions. Unlike standard
convolutions, dynamic convolutions involve processing only spe-
cific subsets of a layer’s filters and input tensor channels, which
are often stored in non-contiguous memory regions. As such, the
designed architecture must include dedicated logic to accurately
access discontinuous memory locations that could degrade the
accelerator’s efficiency due to cache misses and memory latency.
Work like [17] goes around this limitation by introducing constraint
on the pruned filters, which limits the achievable accuracy and ac-
celeration gain. FlexRFML solves this challenge by going beyond
the traditional data path and control path based architectures and
introduces an address path for dynamic memory access.

To fill these research gaps, this paper makes the following core
contributions:

• We propose FlexRFML, a framework that brings for the first time
DyNN to FPGA for next-generation radio spectrum perceptionwith-
out resorting to partial reconfiguration. FlexRFML maps to hard-
ware accelerators any user-defined DyNN through a customized li-
brary based on High-Level Synthesis (HLS). The proposed hardware-
software FlexRFML architecture includes several hardware cores
designed to accelerate the dynamic layers by also guaranteeing real-
time reconfiguration. The cores configuration is changed though
small binary files stored directly in the DNN internal memory. The
correct configuration is autonomously selected at runtime accord-
ing to the perceived input sample;

• We prototype FlexRFML on a Xilinx ZCU102 System-on-Chip
(SoC) and evaluate its performance in terms of accuracy, latency,
area and power consumption. We test FlexRFML on two use cases
using existing radio perception datasets available to the commu-
nity: (i) automatic modulation classification and (ii) transmitter
authentication through radio fingerprinting. Experimental results
indicate FlexRFML presents lower computation complexity (up to
69% FLOPs reduction) and lower inference latency (up to 35.6%)
with respect to static DNNs.

2 The FlexRFML Architecture
Figure 2 provides a high-level overview of the FlexRFML design.
We provide background notions in Section 2.1, followed by an
overview of the novel hardware architectures in Section 2.2. Next,
we provide a detailed discussion of the FlexRFML hardware and
software components in Section 2.3 and 2.4, respectively. Finally, we
provide the software-to-hardware orchestration module in Section
2.5.
Processing System

(PS) – Software

Embedded OS
(Linux)

DNN
Weights

FlexRFML
Controller

Programmable Logic (PL) – Hardware

Input
BRAM

Memory Interface Generator (MIG)

Pooling
Units

Conv
Units

DyNN

Output
BRAM

Auxiliary
DNN

Program
Buffer

AXI-Lite

Weights
(1)

(2)

(3) (3)

(4)

(5)(6)
Weights

I/Q Stream

AXI-Full
AXI-Lite

Instruction
ROM

BRAM
AXI-Stream

…

Figure 2: Overview of the FlexRFML SoC Architecture.

2.1 Background on High-Level Synthesis
The architectural components of FlexRFML reside in a System-on-
Chip (SoC), which combines components such as Central Processing
Unit (CPU), random accessmemory (RAM), input/output (I/O) ports,
and secondary storage into a single substrate. Importantly, SoCs
implement customizable hardware on the FPGA section of the chip,
known as the programmable logic (PL). The PL can be configured
and monitored by the processing system (PS), which includes CPU
and RAM.

FlexRFML is heavily based on high-level synthesis (HLS) for its
hardware components. HLS is an automated design process that
maps high-level languages – e.g., C/C++ – to equivalent RTL de-
scriptions [22]. HLS tools can be guided during synthesis though
directives (or pragmas), to achieve the desired performances in
terms of latency, area and power consumption through optimiza-
tions based on pipelining or parallelization (i.e, loop unrolling).
HLS maps I/O signals to standard industrial interfaces. FlexRFML
employs the Advanced eXtensible Interface (AXI) bus specification
[32] to move data between cores in the PL and between the PS and
the PL. Specifically, FlexRFML uses AXI-Lite, AXI-Stream, and AXI-
Full. AXI-Lite is designed for register-level access to configure the
circuits within the PL. AXI-Stream handles high throughput data
transportation between circuits located in the PL. AXI-Full is used
to support burst-based data transfer between the PL and PS (both
directions) and between PL and external memory devices. Figure 2
depicts the AXI-Full, AXI-Lite, and AXI-Stream interconnections
with continuous, dashed, and dot-dashed lines, respectively.

2.2 Novel Architectures
The three novel hardware components proposed in FlexRFML are: (i)
Dynamic DNN (DyNN) capable of accelerating sub-DNNs through

FlexRFML: Dynamic Neural Networks on FPGAs for Next-Generation Radio Spectrum Perception MobiHoc ’25, October 27–30, 2025, Houston, TX, USA

dynamic convolution and pooling sub-units programmable through
binary file selected by (ii) Auxiliary DNN that conducts a prelimi-
nary inference on the input and loads/stores instructions in (iii) a
Program Buffer to reconfigure the DyNN in real-time.

2.3 Dynamic Neural Network Architecture
Figure 3 provides a detailed overview of the proposed FlexRFML
DyNN and Auxiliary DNN internal structures. The hardware cir-
cuits comprise several FlexRFML sub-units that accelerate the DNN
layers. These sub-units are connected to local buffers for load-
ing/storing intermediate results. The local buffers are synthesized
by the HLS compiler as BRAMs and are surface-packed organized.
The architecture is not pipelined neither layer-wise nor per-segments
[5]. This enhances hardware sharing through folding and time-
multiplexing, allowing the deployment of large DNNs on relatively
small FPGAs. Figure 3 shows a DyNN accelerating two convolution,
two max pooling and one fully connected layers. While pipelining
the architecture would have required 4 BRAMs to load/store the
intermediate feature maps, folding demands only 2 BRAMs. This
is achieved through a multiplexer-demultiplexer controller that
synchronizes the local buffers data paths with the sub-units.

Local Buffer

Local Buffer

Data1

Data2

Input BRAM
FlexRFML
ConvUnit1

FlexRFML
ConvUnit2

FlexRFML
MaxPool1

FlexRFML
FC

FlexRFML
MaxPool2

Output BRAM

Data1

Data2

Multiplexer
Demultiplexer

Figure 3: DyNN and Auxiliary DNN internal architectures.

Figure 4 provides a detailed overview of the FlexRFML sub-units
interfaces. To ease readability, we have depicted in red the AXI-
full and in black the BRAM interfaces. The FlexRFML ConvUnit
handles dynamically adapted convolutions through software-based
reconfiguration. This is achieved by fetching instruction from the
Program Buffer in single-burst access. The program is executed by
dedicated logic called address path and consists of a sequence of
unsigned integers representing the filter indexes and channel indexes.
The filter indexes indicate to the architecture the convolution filters
to fetch from the DDR memory and apply. The channel indexes
represent the active channels in the input feature map. Channels
are active or disabled according to the filter indexes of the preceding
convolution layer. The core intuition behind the proposed software
reconfiguration is to dynamically compute memory offsets from
the corresponding indexes to efficiently identify non-contiguous
memory locations.

As a first step, the FlexRFML ConvUnit resets the content of the
local buffer and loads the program to execute. A burst access request
is issued by the architecture to fetch one filter from the DDR. The
offset for the burst access is calculated resorting on one filter index.
Channel indexes are leveraged to select and store in the First-In

FlexRFML
ConvUnit

Input BRAM

Output
BRAM

Channel
Indexes

Filter
Indexes

FIFO

Program
Buffer

AXI-Full

BRAM

DDR
Memory

FlexRFML
MaxPool

…

Local Buffer

Figure 4: Overview of FlexRFML sub-units interfaces.

First-Out (FIFO) only the active channels of the previously fetched
filter. Filter’s channels can also be referred to as kernels. Next, the
FlexRFML ConvUnit loads one active input channel and its corre-
sponding filter’s kernel in the Convolution core. The Convolution
core architecture is inspired by the Sliding Window Unit [7]. This
design decision handles: (i) input fed in a streaming fashion, (ii)
fine-grained dynamic pruning rates (iii) stationary kernel’s weights
to avoid expensive memory transactions. Input channels and their
corresponding filter kernels are fetched by the Convolution core
until the FIFO is empty. At this stage, a new burst access request
is issued to fetch another filter if there are filter indexes available.
Bias are loaded from the DDR and accumulated in the buffer. To
enhance computation latency, the core has the option to activate
the ReLu function concurrently with bias aggregation. Pooling op-
erations (i.e, Max, Avg) are conducted by the FlexRFML pooling unit.
This sub-unit interfaces only with the local and Program buffers
as shown in Figure 4. Furthermore, the program fetched by the
FlexRFML pooling sub-unit comprises only channel indexes. Indeed,
pooling operations are conducted only across active input channels.
Next, multi-dimensional feature maps are flattened into vectors.
The FlexRFML flattening unit conducts zero padding on the flat-
tened disabled channels. This approach enables to directly feed the
flattened vector to fully connected layers sub-units, thus executing
heavy matrix multiplication operations in a static fashion and avoid-
ing extra burden of indexing, weight-copying, or zero-masking that
can lead to performances degradation [17].
2.4 Software Components
The PS consist a CPU running PetaLinux. The latter is a Linux
version based on the Yocto Project [27], a widely-used platform
for building custom Linux kernels. The Yocto project provides an
interactive interface to integrate customized hardware drivers. In
this work, two drivers have been developed to control the DyNN
and the Auxiliary DNN. The drivers are tasked with several pre-
liminary actions. Specifically, the drivers resort on the AXI-Lite
interface to program the offsets of the DDR partitions in the DyNN
and Auxiliary DNN internal registers. Furthermore, the driver con-
figures the AXI-Full interfaces to enable data transfer from the
instruction ROM to the DyNN. The configuration process consist
of programming the DyNN and Auxiliary DNN registers with the
physical address assigned during synthesis to the Program buffer.
At this stage, the driver stores the DNN parameters in the DDR
memory and places the I/Q stream to the I/O BRAMs. Finally, the
driver enables the computation by writing the corresponding bit

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Francesco Pessia, A.Q.M. Sazzad Sayyed and Francesco Restuccia

in the control and status registers of the hardware components. A
polling strategy [18] is adopted to constantly monitor the DyNN
status register. As soon as the data path updates the status register,
announcing computation completeness, the PS proceeds to collect
results stored in the output BRAM.
2.5 Software-to-Hardware Orchestration
While general-purpose DNN accelerators resort on vast address
spaces and flexible data paths, application-specific accelerators lack
the same resources and as such, they inevitably lack the same flexi-
bility. For this reason, FlexRFML includes an orchestration engine
to close the gap between the software-based DNN and its hardware
counterpart. Figure 5 overviews the proposed software-to-hardware
orchestration. The framework comprises multiple steps involving
hardware (depicted in blue), middleware (red) and software (green).

The framework enables the deployment of any user-defined
DyNN by starting from a pre-trained static DNN. For the sake of
generalization, we consider this DNN to be generated by a hardware-
aware neural architecture search (NAS) algorithm taking into con-
sideration the application (dataset) and any user defined hardware
constraints (step 1). The computation complexity of the dynamic
layers in the original DNN is adapted based on the preliminary
classification of an Auxiliary DNN. The Auxiliary DNN is trained
to infer user defined patterns in the input sample and thus select
the appropriate sub-DNN for further input-specific processing. The
patterns detected by the Auxiliary DNN can be for example seman-
tic association [28], channel conditions [20], for example SNR or
user mobility, or based on application-specific requirements, e.g.,
the complexity of the current operating environment [13]. The out-
put from the Auxiliary DNN is either accepted or rejected based
on a confidence-threshold tuned during model validation (step 2).
Next, the sub-DNNs are extracted from the static DNN based on
the recognized pattern from the Auxiliary DNN (step 3). This step
involves: (i) identifying the dynamic layers, (ii) ranking the filters,
(iii) extracting the sub-DNNs (iv) building the instruction ROM.

Orchestration
Framework

Software
Simulation

Static
DNN

Trained Auxiliary
DNN

Instruction
 ROM

HLS
Library

Expected
Output

Input
Tensor

HLS
Accelerator

Test bench

RTL
Synthesis

Functionality
Validation

Software
Middleware
Hardware

Input

(1) (2)(3)

(4)(5)

Place and
Route

(6)

HW
Constraints Dataset

Hardware-Aware
NAS

 Confidence
threshold Sub-DNNs

(7) (8)
(9)

Auxiliary
DNN

Figure 5: Software-to-Harware Orchestration in FlexRFML.

The number of static and dynamic layers in the DyNN depends
on the computation complexity of the Auxiliary DNN. To achieve
hardware synchronization, the waiting time of the instructions in
the Program Buffer must be minimized. As such, the latency of
the static layers computation should be equal or larger than the
Auxiliary DNN. The filters in the dynamic layers are ranked by
importance according to the Auxiliary DNN output. Next, the sub-
DNNs are extracted leveraging the filter’s ranking. The framework
evaluates several sub-DNNs in terms of reduction of floating point
operations (FLOPs) and accuracy degradation. Next, it builds the
instruction ROM starting from the optimal sub-DNNs. At this stage,
the software description of the DyNN and Auxiliary DNN are con-
verted to HLS language (step 4) through a customized HLS library.
The library comprises parametric and reconfigurable description of
the FlexRFML sub-units designed to accelerate DNN’s layers. The
library retrieves the DNN and instantiates FlexRFML sub-units to
map their parametric description to the layers hyper-parameters.
Subsequently, the framework retrieves the content of the ROM to
program the Auxiliary DNN. Then, a software simulation gener-
ates both input and expected output from the dynamic inference
process (step 5). Next, the HLS accelerator undergoes HLS testing
and synthesis flow that includes (i) behavioral simulation of the
software description, (ii) synthesis to convert the HLS code to RTL,
(iii) software-hardware co-simulation. The behavioral simulation
ensures the correct functionality of the HLS-generated circuits. A
test bench provides inputs to the top-level entity and captures the
corresponding outputs (step 6). A functional validation module
compares the HLS accelerator output against the expected values
(step 7). Next, RTL is synthesized (step 8), with the post-synthesis
report providing estimates of (i) the amount of resources consumed
by the circuit (i.e, flip-flops, logic gates, BRAM blocks), (ii) the max-
imum clock frequency, (iii) power consumption. Then, the HLS tool
reuses the test bench to ensure the functionality of the synthesized
RTL description. Finally, the HDL code is integrated with the other
PL components. After placing, routing and implementation (step
9), the resulting bitstream file is used to program the PL.

3 FlexRFML Prototype and Evaluation

Figure 6: Experimental testbed used to evaluate FlexRFML.

To evaluate the performance of FlexRFML, we have designed and
implemented a testbed shown in Figure 6. The testbed is composed
of (i) a Zynq UltraScale+ XCZU9EG-2FFVB1156 multiprocessor,
running on top of a Xilinx ZCU102 evaluation board; (ii) an Analog
Devices (AD)-9361 RF transceiver [2] running on top of an AD-
FMCOMMS2 evaluation board.

FlexRFML: Dynamic Neural Networks on FPGAs for Next-Generation Radio Spectrum Perception MobiHoc ’25, October 27–30, 2025, Houston, TX, USA

3.1 Proof-of-Concept Applications and Datasets
For our FlexRFML proof-of-concept, we have considered two radio
spectrum perception applications: (i) automatic modulation recog-
nition and (ii) radio fingerprinting. For each datasets, 80% of the
samples were used for training and 20% for testing.
ModulationClassification.This problem entails classifyingwhich
modulation a transmitter is using at a given moment in time. We
have used the RadioML 2018.01A open-source dataset [20], where
up to 24 analog and digital modulations are collected and labeled
in different propagation scenarios. The modulations are collected
at different levels of SNR ranging between -20dB and 30dB.
Radio Fingerprinting. This problem deals with classifying which
radio transmitter the received waveform belongs to. Specifically,
radio fingerprinting leverages the inherent hardware imperfections
present in every radio circuitry to form a unique and unforgeable
"fingerprint" that can authenticate devices [23]. As far as the radio
fingerprinting application is concerned, we have used the AirID RF
dataset [19]. The I/Q samples are received and transmitted though
Ettus B200 mini software defined radios mounted on DJI Matrice
M100 unmanned autonomous vehicles (UAVs). In [19], a fleet of 2
transmitting UAVs and 5 receiving UAVs is deployed outdoor. The
data are transmitted with 5 different amplitude impairments to
emulate 5 radio fingerprints.

3.2 Proof-of-Concept DyNN Design
We designed a dynamic inference procedure compatible with the
hardware implementation and the orchestration engine proposed
respectively in Sections 2.2 and 2.5.

Inference
Output

(a)

Reconfiguration
Module

(c)

(d)Auxiliary
DNN

Radio
Interface

(b)

(e)

Static Layers

Figure 7: Overview of the DyNN inference process. The solid
connector represents the chosen sub-DNN and dashed con-
nectors are the excluded sub-DNNs.

Figure 7 overviews the proposed design. The dynamic inference
comprises the following steps: (a) the input is fed into the static
layers of the DyNN to extract common features (b) simultaneously,
the same input is fed into an Auxiliary DNN. Next, (c) the prediction
from the Auxiliary DNN and confidence level, along with the static
extracted features, are fetched by a network reconfiguration mod-
ule that (d) discriminated between full network inference (static
inference) or select the input specific sub-DNN. Finally, (e) the in-
ference output is computed by the dynamic part of the network.
In this proof-of-concept, we train the Auxiliary DNN to infer the

semantic clusters the input samples belong to. A semantic cluster is
a group of predictable classes from the DyNN that share high-level
features. Semantic association is often utilized in computer vision
applications [28]. For example, images of cats and dogs can be se-
mantically clustered as animals. The DyNN leverages the semantic
cluster predicted by the Auxiliary DNN to activate the correspond-
ing sub-DNN. To ease comprehension, we have depicted in Figure 7
with solid connections the activated sub-DNN and in dashed lines
the discarded ones. In the hardware implementation, the sub-DNN
selection and activation (steps (c)-(d)) is conducted by the confi-
dence sub-unit in the Auxiliary DNN. The sub-DNNs execution
(step (e)) is accelerated by the FlexRFML sub-units in the DyNN,
described in details in Section 2.3. The static layers of the DyNN
and Auxiliary DNN (steps (a)-(b)) are conducted by FlexRFML static
sub-units, that do not support software-based reconfiguration.

3.3 Deep Learning Models Training
In this subsection, we shown the experimental results collected
during steps (1), (2) and (3) of the orchestration framework.

3.3.1 Hardware-Aware Model Selection. Conversely from relying
on computation-heavy hardware-aware NAS algorithms, we uti-
lize model selection to determine the optimum architecture for the
static DNN from which to build the DyNN. We start from the VG-
GNet architecture [29], which is composed of convolution blocks.
The latter include two convolution layers, each with a Rectified
Linear Unit (ReLU) activation and a max pooling (MaxPool) layer.
The model selection algorithm incrementally increases the number
of convolution blocks until the classification accuracy stops im-
proving. Next, the algorithm selects the best architecture given the
following constraints: (i) intermediate features’ maximum size (in
bytes) to avoid BRAM resources saturation for the local buffers; and
(ii) number of sliding window units to avoid saturating logic compo-
nents. The DyNN static structure search and training is conducted
with four NVIDIA A100 GPUs.
Modulation Classification. Table 1 shows the performance of
the candidate architectures. While the accuracy is comparable with
the ResNet accuracy presented in [20], the architectures require
between 10% to 30% less parameters. The accuracy gain achieved
in deeper VGGNets is minimal when compared to the growth of
floating point operations (FLOPs) demanded for single input batch
inference. For example, VGG16 has 3.58% gain in accuracy compared
to VGG10 but requires 5.7x more operations and more than double
parameters. The maximum local buffer size supported by the Xilinx
ZCU102 is determined through iterative synthesis and set to 256KB.
All the architectures, despite different depths, require the same
amount of BRAM to load/store the intermediate feature maps. This
is achieved through folding the local buffers as mentioned in Section
2.3. While the maximum number of sliding window units has not
been set, we have chosen the lowest possible values. As such, we
chose VGG8 and VGG10 as the most suitable candidates for PL
deployment due to their optimal accuracy, complexity and number
of sliding window units.
Radio Fingerprinting. Figure 8 illustrates the performances of the
candidate VGGs for the radio fingerprinting problem as a function
of the link distance (measured in feet). As in [19], the identification
accuracy is strongly dependent on the communication channel. In

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Francesco Pessia, A.Q.M. Sazzad Sayyed and Francesco Restuccia

VGG VGG8 VGG10 VGG12 VGG14 VGG16
ConvBlocks 3 4 5 6 7
Accuracy 82.94% 84.08% 85.60% 87.54% 87.66%
FLOPs 3.9M 4.73M 7.94M 14.3M 26.95 M

Parameters 430.83 k 447.14 k 484.2 k 632.04 k 1.22 M
Local Buffers 96KB 96KB 96KB 96KB 96KB
Sliding Units 6 8 10 12 14

Table 1: Performances of the candidate VGG architectures
for the automatic modulation classification problem.

particular, when the drones distance is lower than 10 feet, all the
considered classifiers achieve 99% accuracy. While our architectures
have comparable accuracy with the VGG classifiers in [19], our
architectures require between 7.52x and 18.4x less FLOPs. The
search algorithm identified VGG4 and VGG6 as the most suitable
candidates for FPGA deployment.

70

80

90

100

VGG4 VGG6 VGG8

A
c
c
u

ra
c
y
 (

%
)

6 feet 10 feet 18 feet

Figure 8: Performances of the candidate VGG architectures
for the radio fingerprinting problem.

3.3.2 Auxiliary Networks Confidence Tuning. Next, we cluster the
dataset and train the Auxiliary DNNs. To obtain the Auxiliary DNN
architecture, we set a threshold based on the worst-case accuracy
requirement and computational budget. Then we evaluate from a
suit of auxiliary networks of different complexities and select the
one with the least computational budget to increase the number of
dynamic layers. The training of the auxiliary scout is conducted
for 50 epochs with a learning rate of 0.001 and Adam optimizer
on subsets of the same training/validation split employed for the
DyNN.
Modulation Classification. We divide the 24 classes into 6 se-
mantic clusters: ASK, PSK, APSK, QAM, frequency modulations (fM)
and analog modulations (aM), according to the modulation type. For
example, 16APSK, 32APSK, 64APSK and 128APSK are clustered in
APSK. The key intuition is that all the APSK modulations are based
on amplitude and phase-shit keying and thus share similar features.
The Auxiliary DNN architecture is illustrated in Table 2. Due to the
limited number of layers, a single Auxiliary DNN is not capable
to generalize its prediction across different levels of SNR without
losing in accuracy. On the other hand, the accuracy recovers when
training the Auxiliary DNN with I/Q samples collected at fixed SNR.
In order to address this challenge we propose to conduct context
switching whenever the channel noise fluctuates. This mechanism
involves dynamically selecting the correct set of model’s parame-
ters according to the current operating environment (e.g, SNR). In
hardware, this procedure is implemented by storing all the possible
Auxiliary DNN configurations in the DDR memory. Then, the DDR-
offset register in the Auxiliary DNN is dynamically modified by

the PS to fetch the correct set of parameters according to the SNR.
The proposed methodology achieves noise-driven adaptability with
minimal delay (one Axi-Lite operation). Multiple auxiliary DNNs
were trained, one for each SNR level spanning between 10 dB to 30
dB. We evaluate different confidence thresholds in terms of seman-
tic cluster prediction accuracy and the probability of dynamically
exclude filters in the VGG layers. Figure 9 shows the performance
of the Auxiliary DNNs, averaged across different SNR levels, as
a function of the confidence thresholds. The results indicate that
higher confidence thresholds enhance the classification accuracy
yet increase the probability of static inference, thus limiting the
sub-DNN activation. These results are collected during the Auxil-
iary DNNs validation phase. The optimal threshold is determined
while optimizing the weighted sum between accuracy and proba-
bility. The worst-case accuracy, associated to the lowest confidence
threshold, oscillates between 50.4% and 63.7% according to the SNR.
The worst-case accuracy is not monotonically dependent to SNR.

25

50

75

100

0 0.2 0.4 0.6 0.8 1.0

25

50

75

100

A
c
c
u
ra

c
y
 (

%
)

S
u
b
-D

N
N

 a
c
ti
v
a
ti
o
n

P

ro
b
a
b
ili

ty

Confidence Threshold

Accuracy Probability

Figure 9: Performances of Auxiliary DNN as a function of
different confidence thresholds in modulation classification.

Layer Output dimensions
Input 2x1024

Conv1D 4x1024
MaxPool 4x512
Conv1D 6x512
MaxPool 6x256

FullyConnected 1x100
FullyConnected 1x6

SoftMax 1x6
Table 2: The Auxiliary DNN architecture for the automatic
modulation classification problem

Radios Radio1 Radio2 Radio3 Radio4 Radio5
P(𝐶𝑙𝑢𝑠𝑡𝑒𝑟0) 99.7% 99.5% 95.9% 17.37% 1.21%
P(𝐶𝑙𝑢𝑠𝑡𝑒𝑟1) 0.23% 0.5% 4.1% 82.6% 98.79%

Amplitude impairment 1dB 2dB 3dB 4dB 5dB

Table 3: Unsupervised clustering results

Radio Fingerprinting. Defining semantic clusters is challenging
due to lack of clearly semantically similar classes. Nevertheless, se-
mantic clusters can be learned in a unsupervised fashion leveraging

FlexRFML: Dynamic Neural Networks on FPGAs for Next-Generation Radio Spectrum Perception MobiHoc ’25, October 27–30, 2025, Houston, TX, USA

 70

 75

 80

 85

 90

 95

 100

ASK PSK APSK QAM fM aM

A
c
c
u

ra
c
y
 (

%
)

Subgraph Accuracy Static Accuracy

 0

 5

 10

 15

 20

ASK PSK APSK QAM fM aMF
L

O
P

s
 R

e
d

u
c
ti
o

n
 (

%
)

Figure 10: VGG10 sub-DNN performances in terms of classi-
fication accuracy and FLOPs reduction.
the transmissions between UAVs. As such, we train the DyNN using
supervised contrastive learning [14]. Afterwards, we cluster the
radios though K-means on the intermediate features of the DyNN.
This kind of loss function independently learns to group closer the
features belonging to similar classes. This in turn, enhances the
semantic clusters identification. Table 3 shows the probabilities for
each radio to belong to a cluster. The number of semantic clusters
is defined in a supervised fashion and fed as input to the K-means
algorithm. Interestingly, radios grouped in the same cluster share
comparable amplitude impairments and subsequently similar in-
jected IDs. The Auxiliary DNN in the UAV fingerprinting problem
achieves high prediction accuracy (between 95-99%) resorting on a
single fully connected layer and low confidence thresholds (about
10%). Such low confidence threshold allows sub-DNN activation
for 97.9% of the inferences, resulting in latency reduction.

3.3.3 Sub-DNNs extraction. The orchestration framework extracts
and evaluates sub-DNNs for VGG4, VGG6, VGG8 and VGG10 based
on the Auxiliary DNN preliminary classification. To minimize the
waiting time of the Program Buffer, the first convolution block (for
VGG4 and VGG6 in radio fingerprinting) and up to the second con-
volution block (for VGG8 and VGG10 in modulation classification)
are set to be static. The filters of the dynamic layers are ranked
utilizing the DCS (Discriminative Capability Score) algorithm pro-
posed in [28]. The Discriminative Capability Score algorithm scores
the filters based on their capability to best discriminate among the
classes of a given semantic cluster. The filters are ranked using these
scores. Sub-DNNs are build, for each semantic cluster, by excluding
the filters with the least scores in each dynamic layer. The exclu-
sion rates are tuned evaluating the performance (in terms of FLOPs
reduction and accuracy drop) of several candidate sub-DNNs.
Modulation Classification. Figure 10 shows the performance of
the optimal sub-DNNs extracted from VGG10 when SNR is 26dB.
The sub-DNN accuracy drop with respect to full static inference is
not monotonically dependent with respect to the exclusion rates. In
fact, while QAM’s sub-DNN excludes 19.5% of the FLOPs resulting
in 10.78% accuracy drop, for frequency modulations excluding 16%
of FLOPs leads to 26.94% decrease in accuracy. Therefore, the accu-
racy drop strongly depends on the capability of filters to recognize

semantic clusters. In fact, the analog modulation sub-DNN in VGG8,
dynamically excludes 28% of FLOPs resulting in improvement up to
10% in classification accuracy. Similarly, ASK’s sub-DNN extracted
from VGG10 reduces the FLOPs by 14.38% and achieves 95% de-
tection accuracy (3% more than the static scenario). The overall
accuracy drop of the system (VGG+Aux) is 8% for VGG8 and 5% for
VGG10. Although individual sub-DNN models may experience a
substantial accuracy drop (up to 27%), the overall decline remains
moderate, as many input samples are filtered out by the Auxiliary
DNN based on the confidence threshold.
Radio Fingerprinting. Due to the limited number of semantic
clusters and complexity of the accelerators adapted to the UAV fin-
gerprinting problem, it has been possible to conduct an exhaustive
search of the optimal sub-DNNs. This allowed to identify high-
performing sub-DNNs in VGG6 able to dynamically reduce up to
69% of FLOPs without losing in accuracy (less than 3%).

3.4 Area, Power and Latency Evaluation
The pre-trained VGGmodels, the Auxiliary DNN and the sub-DNNs
are then processed by the orchestration framework to generate, test
and synthesize the hardware prototypes (steps 4-9). The confidence
threshold is set to 80% in modulation classification and 10% for UAV
identification. The synthesized hardware works on a fixed point
number representation with 10 bits integer and 22 bits fractional
parts. This design decision achieves comparable computation accu-
racy with respect to a floating point implementation yet consumes
lower resources and optimizes computation delay. We exhaustively
evaluate the synthesized cores in terms of resources utilization,
power consumption and inference latency.

IP LUTs FF CARRY8 CLB BRAM DSP
Aux(MC) 2.4% 2.91% 1.14% 8.52% 15.63% 1.98%
Aux(UAV) 1.1% 0.75% 0.69% 2.25% 0.33% 0.52%
VGG4 1.3% 0.92% 0.76% 2.81% 3.02% 0.95%
VGG6 2% 1.36% 1.21% 4.28% 5.37% 1.59%
VGG8 8.16% 5.63% 10.06% 19.70% 5.26% 4.52%
VGG10 15.08% 8.37% 15.08% 35.48% 10.31% 5.12%

Table 4: Area utilization.

3.4.1 Area. Table 4 reports the resource utilization of the hard-
ware components. The overall additional resources allocated for the
Auxiliary DNN are negligible when compared against the amount
of hardware employed by the DyNNs. The main cost to deploy the
Auxiliary DNN is in BRAM resources. In fact, up to 15.63% of the
available BRAM blocks are consumed to instantiate the instruc-
tion ROM in the Auxiliary DNN architecture. Furthermore, the
amount of instructions and in turn of BRAM resources are strongly
application dependent. In fact, the size of the instruction ROM is
heavily influenced by: (i) number of semantic clusters, (ii) number
of dynamic layers (iii) number of filters in the dynamic layers. In
resource-constrained platforms, the instructions must be stored in
the DDR memory. Due to the parallel structure of the proposed in-
ference process (see Sec. 3.2), the additional delay required to access
the DDR can be compensated by incrementing the number of static
layers in the DyNN. Although fewer dynamic layers reduce the
speed-up for dynamic inferences, the static inference end-to-end
latency is preserved.

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Francesco Pessia, A.Q.M. Sazzad Sayyed and Francesco Restuccia

 0.9

 1

 1.1

 1.2

 1.3

ASK
PSK

APSK

Q
AM

fM aM

Baseline

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Figure 11: Power consumption for VGG8 as a function of
the predicted semantic cluster. The black dotted baseline the
power consumption for static inference.

3.4.2 Power consumption. We used HLS to obtain an estimation
of the hardware power consumption. Table 5 reports the power uti-
lization required for static DNN inference. As expected, the power
consumption is heavily influenced by the accelerated DNNs com-
plexity. Nevertheless, while the power consumption gap between
VGG6 and VGG8 is substantial, the rise in FLOPs is only 50%. On
the other hand, the number of burst accesses rises from 817 to
2,914. This indicates that for the proposed architecture, the power
consumption is primarily due to memory accesses.

IP Power consumption Burst accesses
Aux 0.65W 120

Aux(UAV) 89mW 6
VGG4 162mW 283
VGG6 313mW 817
VGG8 1.3W 2,914
VGG10 2.45W 5,063

Table 5: Power consumption.

Overall, the additional power consumption required to deploy
the the Auxiliary DNN is between 8.4-9.2% for the modulation
classification and 2.01-2.09% for UAV identification. Nevertheless,
dynamically pruning filters is expected to reduce the number of
burst memory accesses and switching activity. As illustrated in Fig-
ure 11, the VGG8’s power consumption highly fluctuates according
to the predicted semantic cluster. We depicted in dotted black the
static power consumption of the accelerator which we leverage as
a benchmark. Up to 0.4 W can be saved by activating sub-DNNs
during the inference process. Therefore, energy compensation is
achieved whenever the Auxiliary DNN produces high confidence
classifications. In fact, the overall additional power consumption
required to deploy the Auxiliary network can drop from 9.2% to as
little as 3.53% for VGG8.
3.4.3 Latency. An AXI-Timer is incorporated in the PL to mea-
sure the inference latency of the studied accelerators directly in
hardware. The AXI-Timer is powered with the same clock fre-
quency of the designed hardware accelerator. The HLS tools indi-
cates 200MHz as the highest working frequency. The DyNN and
Auxiliary DNN computation is enabled simultaneously. At the same

time the AXI-Timer counting is triggered. As soon as the compu-
tation is completed, the AXI-Timer is disabled, the output BRAM
content monitored and the inference latency measured.

20

30

40

ASK PSK APSK QAM fM aM

Baseline

VGG10

In
fe

re
n
c
e
 l
a
te

n
c
y
 (

m
s
)

20

25

30

ASK PSK APSK QAM fM aM

Baseline

VGG8

In
fe

re
n
c
e
 l
a
te

n
c
y
 (

m
s
)

Figure 12: Inference latency for VGG8 and VGG10 accelera-
tors according to the input cluster

Figure 12 depicts the inference latency for VGG8 and VGG10
accelerators as a function of the predicted cluster. The key take
away are: (i) irrespective to the semantic class, the reconfiguration
delay is negligible, (ii) the system achieves up to 28.80% lower
latency with respect to deploying the VGG accelerators as a stand
alone module (statically). In fact, the prediction latency of VGG10
when the Auxiliary DNN detects APSK (no FLOPs reduction) is
only 0.02 ms higher than deploying the VGG accelerator statically
(validating point (i)). This suggests that the latency required by the
FlexRFML cores to fetch instruction from the Program Buffer and
reconfigure the data flow is negligible. Regardless to the predicted
cluster, the algorithm is computed in less than 30.2 ms for VGG8
and 41.1 ms for VGG10. Furthermore, according to the prediction
of the Auxiliary classifier, the latency is optimized up to 28.80% for
VGG8 and 15.8% for VGG10.

IP Semantic Cluster Latency Acceleration
VGG4 Cluster0 4.94ms 10.1%
VGG4 Cluster1 5.05ms 9.2%
VGG6 Cluster0 9.44ms 0%
VGG6 Cluster1 6.08ms 35.6%

Table 6: Inference latencies as a function of the predicted
semantic cluster in the UAV fingerprinting problem.

Table 6 shows the measured latencies and the resulting accelera-
tion with respect to static inference for VGG4 and VGG6 according
to the perceived radio signal. The static prediction delays are 5.55
ms for VGG4 and 9.44 ms for VGG6. Up to 35.6% acceleration is
achieved for VGG6 when the auxiliary detects comunications from
a radio belonging to Cluster1. The average speed up of the system
strongly depends on the input signal sequence and the confidence
threshold. For UAV identification, this metric can be easily mea-
sured due to the low confidence threshold. In particular, assuming

FlexRFML: Dynamic Neural Networks on FPGAs for Next-Generation Radio Spectrum Perception MobiHoc ’25, October 27–30, 2025, Houston, TX, USA

 2

 4

 8

Raspberry Pi5 Jetson Orin DPUCZDX8G FlexRFML

P
o

w
e

r
(W

)

Figure 13: Power consumption of different platforms while
computing VGG10

a similar amount of data transfer from each radio, the dynamic
system achieves an average acceleration of 9.65% for VGG4 and
17.8% for VGG6.

3.5 FlexRFML vs GPU, CPU, and DPU
In this section, we compare the performances of FlexRFML with
several benchmarks. Several testbeds have been designed to mea-
sure inference latency on a Xilinx DPUCZDX8G, a Jetson Orin Nano,
a Rasberry Pi5, and a Cortex A53 64 bit quad core processor, which
is the PS of the considered Xilinx board. To ensure a fair com-
parison across heterogeneous platforms, latencies are normalized
based on the accelerator’s operating clock frequencies. Table 7 re-
ports the latencies, measured in clock cycles, for the acceleration of
VGG10. The key limitations in accelerating DyNN on state of the art
embedded accelerators are (i) the automatic sub-DNNs extraction
and execution is not supported, (ii) the lack of a clear correlation
between theoretical analysis (FLOPs reduction) and experimental
performance (latency optimization).

Cluster 𝑅𝑎𝑠𝑏𝑒𝑟𝑟𝑦𝑃𝑖5 𝐶𝑜𝑟𝑡𝑒𝑥𝐴53 𝐽𝑒𝑡𝑠𝑜𝑛𝑂𝑟𝑖𝑛𝑁𝑎𝑛𝑜 𝐷𝑃𝑈𝐶𝑍𝐷𝑋8𝐺 FlexRFML

ASK 54.1x106 106x106 2.7x106 2.72x106 7.2x106

PSK 43.3x106 103x106 2.63x106 2.76x106 6.94x106

APSK 30.5x106 124x106 2.58x106 2.73x106 8.2x106

QAM 37.8x106 101x106 2.67x106 2.74x106 6.92x106

fM 44.0x106 106x106 2.72x106 2.739x106 7.12x106

aM 42.8x106 124x106 2.57x106 2.74x106 8.2x106

Table 7: Software and hardware acceleration of VGG10 mea-
sured in clock cycles.

The former limitation has been addressed through a model se-
lection based approach. In detail, the sub-DNNs are pre-compiled,
stored in the accelerator’s memory, and dynamically selected at
inference time. Despite its lack in scalability, this procedure was es-
sential in mitigating reconfiguration delays demanded by dynamic
sub-DNN extraction, which takes 130–150 ms on GPUs, up to 500
ms on CPUs, and is not supported by DPUs. The limitation of CPU
and DPU is underlined by the results in Table 7. Despite achieving
lower latencies, a GPU or DPU based acceleration does not benefit
from the reduced computation complexity of the pre-compiled sub-
DNNs. This further supports our design choice to accelerate the
dynamic convolutions using the sliding window core instead of par-
allel processing elements executing convolutions through matrix
multiplications. Moreover, both DPU and GPU accelerators demand
significant power consumption, with the DPU using 10.62W and

the GPU drawing 4.86W (see Fig. 13). Although a CPU-based ac-
celeration offers lower performances, it can still achieve latency
optimization through dynamic inference. Indeed, the C-program
executed by the Cortex® A53, inspired by the FlexRFML architec-
ture, obtains 15% acceleration for APSK. On the other hand, state
of the art libraries for CPU inference (i.e, PyTorch), despite opti-
mized performances, achieve no correlation between theoretical
and experimental analysis.

4 Related Work
Radio spectrum perception has garnered significant attention from
the research community [3, 12]. Early work has focused on narrow-
band approaches such as energy detection and matched filtering,
which require sensitive time to monitor the spectrum and esti-
mate occupancy across a broader frequency range [10]. For this
reason, prior work has adopted DNNs in a variety of wideband
radio spectrum perception applications like radio fingerprinting
[23], detection of unused and/or underutilized spectrum portions
[30] and wireless protocol classification [31], among others[25].
The key issue with such prior work is that the DNN inference is
performed offline with pre-collected wireless data.
Real-time Spectrum Perception. Although early work demon-
strated the feasibility of real-time DNN-based radio spectrum per-
ception on a SoC architecture [24, 26], such work assumes the
architecture of the DNN is static. On the other hand, given their
constrained and dynamic nature, radio devices may require a dif-
ferent trade-off between DNN accuracy (i.e., more depth, weights,
computation) and energy consumption (i.e., less depth, weights,
computation) during different periods of their lifetime. As such,
DyNNs may bring unprecedented advantages both in terms of
system performances, security against adversarial attacks [6] and
accuracy through techniques such as lifelong learning [21].
Dynamic neural networks. For an excellent survey on DyNNs,
we refer to [11]. Regarding hardware-based DyNNs, existing work
has explored dynamic depth (i.e., early exiting) and dynamic width
(i.e., channel skipping) DNNs. The work in [15] proposes an adaptive
pruning and early exiting (AdaPEx) framework for FPGA, which
resorts on a run-time manager to adaptively select from a library
the most suitable DNN configuration in terms of early exits and
pruning rates according to the workload. However, [15] considers
the number of processing elements in determining the pruning
rates, which implies pruning patterns constraints. Furthermore,
dynamically changing the pruning rates requires reconfiguring the
FPGA fabric which has been shown to take up to 42 ms in some
cases [8] and is not sustained in ASIC. Currently, for the best of our
knowledge, software-to-hardware automatic frameworks can only
sustain dynamic-depth DNN deployment on FPGA. The newest
work on the topic [4] proposes an orchestration tool to map the
software description of any user defined dynamic-depth neural
network to hardware prototypes. Unfortunately, such tool tailored
to channel-skipping DyNNs has not been designed yet. Other work
focus on computation precision dynamism. The latter consist in
adapting the precision in real-time based on the workload to trade-
off the DNN prediction accuracy with computation latency. [16]
proposed an architecture including both low- and high-precision
cores characterized by different quantization levels and parallelism.

MobiHoc ’25, October 27–30, 2025, Houston, TX, USA Francesco Pessia, A.Q.M. Sazzad Sayyed and Francesco Restuccia

Although the low-precision core computes the majority of the work-
load, the end-to-end latency increases when the high-precision core
has to be executed. As such, we have designed an architecture that
exploits parallel computation. To the best of our knowledge, prior
work has not considered tailoring dynamic-width neural networks
for radio spectrum perception.

5 Conclusion
In this work, we have proposed FlexRFML, the first hardware ac-
celerator designed to sustain channel skipping DyNN computa-
tion in real-time through a software-based reconfiguration com-
patible with FPGA-to-ASIC conversion. As such, we provided a
detailed walk through of the FlexRFML architecture operations
and data flow. Building on a parametric description of the accel-
erator, we proposed a software-to-hardware orchestration engine
that allows prototyping any user defined channel skipping DyNN.
We extensively evaluated several FlexRFML prototypes tailoring
the architectures to the modulation classification and UAV finger-
printing problems. To further validate the performances of the
proposed architecture, we cross compared its performances in
the area/power/latency/accuracy design space against high per-
formances embedded devices. Experimental results revealed that
FlexRFML improves inference acceleration up to 35.6%.

6 Acknowledgements
Thiswork has been supported by theNSF under grants CCF-2218845,
ECCS-2229472 and ECCS-2329013; by the Air Force Office of Scien-
tific Research under grant FA9550-23-1-0261; and by the Office of
Naval Research under grant N00014-23-1-2221.

References
[1] Reza Amini Gougeh and Zeljko Zilic. 2024. Systematic Review of IoT-Based

Solutions for User Tracking: Towards Smarter Lifestyle, Wellness and Health
Management. Sensors (2024). https://doi.org/10.3390/s24185939

[2] Analog Devices Incorporated. 2018. AD9361 RF Agile Transceiver Data
Sheet. http://www.analog.com/media/en/technical-documentation/data-sheets/
AD9361.pdf.

[3] Youness Arjoune and Naima Kaabouch. 2019. A Comprehensive Survey on Spec-
trum Sensing in Cognitive Radio Networks: Recent Advances, new Challenges,
and Future Research Directions. Sensors 19, 1 (2019), 126.

[4] Benjamin Biggs, Christos-Savvas Bouganis, and George Constantinides. 2023.
ATHEENA: A Toolflow for Hardware Early-Exit Network Automation. 2023 IEEE
31st Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM) (2023), 121–132. https://doi.org/10.1109/FCCM57271.2023.
00022

[5] Xuyi Cai, YingWang, XiaohanMa, Yinhe Han, and Lei Zhang. 2022. DeepBurning-
SEG: Generating DNN Accelerators of Segment-Grained Pipeline Architecture.
2022 55th IEEE/ACM International Symposium onMicroarchitecture (MICRO), 1396–
1413. https://doi.org/10.1109/MICRO56248.2022.00094

[6] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. In Proceedings of IEEE Symposium on Security and Privacy
(S&P). Ieee, 39–57.

[7] Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees Vissers,
and Zhiru Zhang. 2022. FPGA HLS Today: Successes, Challenges, and Opportu-
nities. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 15, 4
(2022), 1–42.

[8] Mohammad Farhadi, Mehdi Ghasemi, and Yezhou Yang. 2019. A Novel De-
sign of Adaptive and Hierarchical Convolutional Neural Networks using Partial
Reconfiguration on FPGA. (2019). arXiv:1909.05653 [cs.CV]

[9] Federal Communications Commission (FCC). [n. d.]. Spectrum Crunch. https:
//www.fcc.gov/general/spectrum-crunch.

[10] Jiabao Gao, Xuemei Yi, Caijun Zhong, Xiaoming Chen, and Zhaoyang Zhang.
2019. Deep Learning for Spectrum Sensing. IEEEWireless Communications Letters
8, 6 (2019), 1727–1730.

[11] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang.
2021. Dynamic Neural Networks: A Survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence 44, 11 (2021), 7436–7456.

[12] Jithin Jagannath, Nicholas Polosky, Anu Jagannath, Francesco Restuccia, and
Tommaso Melodia. 2019. Machine Learning for Wireless Communications in
the Internet of Things: A Comprehensive Survey. Ad Hoc Networks 93 (2019),
101913.

[13] Timothy K Johnsen andMarco Levorato. 2024. NaviSlim: Adaptive Context-Aware
Navigation and Sensing via Dynamic Slimmable Networks. 2024 IEEE/ACM Ninth
International Conference on Internet-of-Things Design and Implementation (IoTDI)
(2024), 110–121. https://doi.org/10.1109/IoTDI61053.2024.00014

[14] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised
Contrastive Learning. Advances in Neural Information Processing Systems 33
(2020), 18661–18673. https://proceedings.neurips.cc/paper_files/paper/2020/file/
d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf

[15] Guilherme Korol, Michael Guilherme Jordan, Mateus Beck Rutzig, Jeronimo
Castrillon, and Antonio Carlos Schneider Beck. 2023. Pruning and Early-Exit
Co-Optimization for CNN Acceleration on FPGAs. (2023), 1–6.

[16] Alexandros Kouris, Stylianos I Venieris, and Christos-Savvas Bouganis. 2018.
𝐶𝑎𝑠𝑐𝑎𝑑𝑒

𝐶𝑁𝑁 : Pushing the performance limits of quantisation in convolutional
neural networks. 2018 28th International Conference on Field Programmable Logic
and Applications (FPL) (2018), 155–1557.

[17] Changlin Li, GuangrunWang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun
Chang. 2021. Dynamic Slimmable Network. (2021), 8607–8617.

[18] Olivier Maquelin, Guang R Gao, Herbert HJ Hum, Kevin B Theobald, and Xin-Min
Tian. 1996. Polling Watchdog: Combining Polling and Interrupts for Efficient
Message Handling. ACM SIGARCH Computer Architecture News 24, 2 (1996),
179–188.

[19] Subhramoy Mohanti, Nasim Soltani, Kunal Sankhe, Dheryta Jaisinghani, Marco
Di Felice, and Kaushik Chowdhury. 2020. AirID: Injecting a Custom RF Fin-
gerprint for Enhanced UAV Identification using Deep Learning. In GLOBECOM
2020-2020 IEEE Global Communications Conference. IEEE, 1–6.

[20] Timothy James O’Shea, Tamoghna Roy, and T Charles Clancy. 2018. Over-the-air
Deep Learning Based Radio Signal Classification. IEEE Journal of Selected Topics
in Signal Processing 12, 1 (2018), 168–179.

[21] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual Lifelong Learning with Neural Networks: A Review.
Neural networks 113 (2019), 54–71.

[22] Nitin Pundir, Sohrab Aftabjahani, Rosario Cammarota, Mark Tehranipoor, and
Farimah Farahmandi. 2022. Analyzing security vulnerabilities induced by high-
level synthesis. ACM Journal on Emerging Technologies in Computing Systems
(JETC) 18, 3 (2022), 1–22.

[23] Francesco Restuccia, Salvatore D’Oro, Amani Al-Shawabka, Mauro Belgiovine,
Luca Angioloni, Stratis Ioannidis, Kaushik Chowdhury, and Tommaso Melodia.
2019. DeepRadioID: Real-Time Channel-Resilient Optimization of Deep Learning-
based Radio Fingerprinting Algorithms. Proc. of ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc) (2019).

[24] Francesco Restuccia and TommasoMelodia. 2019. Big Data Goes Small: Real-Time
Spectrum-Driven Embedded Wireless Networking Through Deep Learning in
the RF Loop. Proc. of IEEE Conference on Computer Communications (INFOCOM)
(2019).

[25] Francesco Restuccia and Tommaso Melodia. 2020. Deep Learning at the Physical
Layer: System Challenges and Applications to 5G and Beyond. IEEE Communica-
tions Magazine 58, 10 (2020), 58–64.

[26] Francesco Restuccia and Tommaso Melodia. 2020. DeepWiERL: Bringing Deep
Reinforcement Learning to the Internet of Self-Adaptive Things. Proceedings of
IEEE Conference on Computer Communications (INFOCOM) (2020).

[27] Otavio Salvador and Daiane Angolini. 2014. Embedded Linux Development with
Yocto Project. Packt Publishing Ltd.

[28] Sazzad Sayyed, Jonathan Ashdown, and Francesco Restuccia. 2023. Faster and Ac-
curate Neural Networks with Semantic Inference. arXiv preprint arXiv:2310.01259
(2023).

[29] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).

[30] Daniel Uvaydov, Salvatore D’Oro, Francesco Restuccia, and Tommaso Melodia.
2021. DeepSense: Fast Wideband Spectrum Sensing Through Real-Time In-the-
Loop Deep Learning. In Proc. of IEEE Intl. Conf. on Computer Communications
(INFOCOM). Vancouver, BC, Canada.

[31] Daniel Uvaydov, Milin Zhang, Clifton Paul Robinson, Salvatore D’Oro, Tom-
maso Melodia, and Francesco Restuccia. 2024. Stitching the Spectrum: Semantic
Spectrum Segmentation with Wideband Signal Stitching. Proceedings of IEEE
Conference on Computer Communications (INFOCOM) (2024).

[32] AXI Xilinx. 2011. Reference Guide, UG761 (v13. 1). URL http://www. xil-
inx. com/support/documentation/ip documentation/ug761 axi reference guide. pdf
(2011).

https://doi.org/10.3390/s24185939
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9361.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9361.pdf
https://doi.org/10.1109/FCCM57271.2023.00022
https://doi.org/10.1109/FCCM57271.2023.00022
https://doi.org/10.1109/MICRO56248.2022.00094
https://arxiv.org/abs/1909.05653
https://www.fcc.gov/general/spectrum-crunch
https://www.fcc.gov/general/spectrum-crunch
https://doi.org/10.1109/IoTDI61053.2024.00014
https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf

	Abstract
	1 Introduction and Motivation
	2 The FlexRFML Architecture
	2.1 Background on High-Level Synthesis
	2.2 Novel Architectures
	2.3 Dynamic Neural Network Architecture
	2.4 Software Components
	2.5 Software-to-Hardware Orchestration

	3 FlexRFML Prototype and Evaluation
	3.1 Proof-of-Concept Applications and Datasets
	3.2 Proof-of-Concept DyNN Design
	3.3 Deep Learning Models Training
	3.4 Area, Power and Latency Evaluation
	3.5 FlexRFML vs GPU, CPU, and DPU

	4 Related Work
	5 Conclusion
	6 Acknowledgements
	References

