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Abstract

Out-of-Distribution (OOD) detection is of paramount
importance in guaranteeing safe and reliable deployment
of a Deep Neural Network (DNN) model in real-world set-
tings. However, most OOD detection approaches still lack
motivation rooted in established properties of the DNNs.
This disconnect between the proposed approach and theo-
retical underpinning to measurable DNN properties makes
these approaches unreliable. To bridge this gap, we take a
different perspective to using energy scoring for OOD de-
tection. Specifically, we look at energy score through the
lens of the properties of neural collapse and observe that
simple feature scaling can improve the separation between
In-Distribution (ID) and OOD inputs. Based on this obser-
vation, we propose ENCORE, which scales features of each
input adaptively and uses them to obtain modified logits
based on insights from theory of neural collapse. We show
that ENCORE outperforms state-of-the-art approaches –
for example, by 1.37% on CIFAR10 and by 1.07% on Im-
agenet benchmarks.

1. Introduction

In real-world settings, a DNN may encounter corrupted
inputs or entirely new classes not encountered during train-
ing. These are commonly referred to as OOD inputs. Ex-
isting OOD detection methods fall into two broad cate-
gories, namely training-time regularization and post-hoc
approaches [25]. Training-time methods improve OOD ro-
bustness by modifying the training objective [10,16,22]. In
contrast, post-hoc methods do not require any changes to
training as they work with already trained models. Prior
work has investigated confidence-based methods of OOD
detection that rely on the DNN output probabilities [8, 9,
12, 13]. On the other hand, feature-based methods exam-
ine internal representations [3, 19, 21]. The key limitation
is that existing approaches are still often empirical in nature
and most do not connect with any established property of
the DNNs. As a result, it becomes harder to pinpoint the
conditions under which an OOD detector might fail.

Among post-hoc methods, energy-based scoring has be-
come one of the most widely adopted approaches for OOD
detection. It computes a scalar score from the DNN logits,
typically using the log-sum-exp formulation [13]. The ap-
peal of this method lies in its simplicity, effectiveness, and
compatibility with pre-trained softmax classifiers. Since the
energy score captures the probability of a single input to oc-
cur, it serves as a proxy for uncertainty. Lower energy val-
ues usually indicate more confident predictions on ID data.
However, despite its success, the energy score is not always
reliable as it can still assign low energy (i.e., high confi-
dence) to OOD inputs, especially when the model is poorly
calibrated or the logits are spuriously high. This overconfi-
dence fundamentally limits existing energy-based methods.

Figure 1. (a) With neural collapse, the ID features cluster around
respective class means. As OOD inputs do not align with any
class, increasing the feature vector increases the separation be-
tween ID and OOD inputs. (b) OOD inputs are orthogonal to ID
feature space according to neural collapse. As such, the norm of
the OOD inputs projected onto the feature space is significantly
different than ID inputs.

Key Idea. In this work, we provide a new perspective on
energy-scoring for OOD detection through the lens of neu-
ral collapse [17]. The latter is a phenomenon observed dur-
ing the terminal phase of training of deep classifiers, where
class features and weights form a highly structured symmet-
ric geometric configuration. Neural collapse offers a new
perspective on how energy behaves for ID and OOD inputs.
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We leverage this new perspective (illustrated in Figure 1) to
propose Energy with Neural Collapse-Oriented Representa-
tion Embedding (ENCORE), an improved OOD score based
on theoretical observations of neural collapse. Specifically,
ENCORE computes the margin between the energy score of
the ID and OOD inputs under the assumption of neural col-
lapse. Importantly, we show that this margin increases with
the increase in feature norm, improving the OOD detection
performance. Next, we incorporate the deviations from the
assumptions of the neural collapse and construct an adap-
tive feature-norm-based logit with which the energy score
is computed. This approach minimally increases the com-
plexity of the energy score while significantly improving
the OOD detection performance, which performs competi-
tively or better than the SOTA methods in both near-OOD
and far-OOD scenarios. To summarize, our contributions
are as follows:

• We provide a theoretical analysis of energy-based
OOD detection under neural collapse, showing that the mar-
gin between ID and OOD energy scores increases with fea-
ture norm. Based on this insight, we propose an adaptive
feature-norm-based energy score that accounts for devia-
tions from ideal neural collapse;

• We validate our method through comprehensive ex-
periments across diverse architectures and standard OOD
benchmarks, demonstrating competitive or superior perfor-
mance in both near-OOD and far-OOD settings without re-
quiring retraining or architectural changes. In far-OOD set-
tings, ENCORE achieves 1.37% better False Positive Rate
(FPR) than the nearest state-of-the-art (SOTA) approach for
CIFAR10 benchmark while it lags behind the SOTA by only
0.26% for Imagenet benchmark. For near-OOD, ENCORE
outperforms SOTA by 1.07%, and 0.35% on Imagenet and
CIFAR-10 benchmarks respectively. We also show that EN-
CORE performs consistently for both convolutional archi-
tecture (e.g., ResNet, ConvNext, RepVGG) as well as vi-
sion transformers (ViTs).

2. Background and Problem Formulation
Problem Formulation. Similar to prior works, we cast our
problem in the context of supervised multi-class classifica-
tion. We represent a DNN as function Fθ(.) parameterized
by θ. X represents the input random variable and x repre-
sents its particular realization. Probability distributions are
denoted as P , and their corresponding probability measures
are denoted with P. We use Did to denote ID dataset and
Pid for ID data distribution. We refer to Pood to denote the
OOD distribution, while Dood denotes the OOD dataset.

We define the problem of OOD detection as a binary
classification problem. Specifically, we aim to design a
score function S(x) such that, S(x) ∼ PS

id when x ∈ Did

and S(x) ∼ PS
ood when x ∈ Dood. Then the binary classi-

fication decision can be formulated as finding the indicator
function 1(x) such that

1(x) =

{
1, if S(x) > τ
0, if S(x) < τ.

(1)

A value of 1 in the indicator function implies x ∼ Pid and
a value of 0 means x ∼ Pood. The threshold τ controls
the performance of the binary classifier and trades off True
Positive Rate (TPR) for lower FPR. Ideally, the distributions
PS
id and PS

ood have zero overlap, and the threshold τ can be
set such that 100% TPR can be achieved for 0% FPR. In
practice, we aim to find the threshold that can achieve a
certain TPR (typically 95%) and measure the performance
of the classifier with the obtained FPR value. Notice that
Eq. (1) implicitly assumes that the score for the ID samples
is higher than the score for the OOD samples. Even if this is
not the case, the score function can be inverted (multiplied
with -1) to comply with Eq. (1).

Background on Neural Collapse (NC). This phenomenon
describes the emergent geometric structure of the last-layer
features and weights of a DNN when training drives the
classification error to zero while continuing to minimize the
cross-entropy loss. This phase, referred to as the Terminal
Phase of Training (TPT), results in convergence to a highly
symmetric and interpretable form.

Let Fθ(·) be a DNN trained on an in-distribution dataset
Did = {(xi, yi)}Ni=1, where yi ∈ {1, 2, . . . , C} and C is
the number of classes. Let ϕθ(·) denote the feature extrac-
tor such that the penultimate-layer feature representation is
hi = ϕθ(xi) ∈ Rd. Denote the class-conditional feature
mean as µc = Ex∼Pid

[ϕθ(x|y = c)] and the global mean
as µG = 1

C

∑C
c=1 µc. Let W = [w1, . . . ,wC ]

⊤ ∈ RC×d

denote the weight matrix of the final linear classifier. The
properties of the neural collapse are as follows [17]:

1. (NC1) Variability Collapse: The within-class vari-
ability of last-layer features collapses to zero:

ΣW = E(x,y)∈Did
[(ϕθ(x)−µy)(ϕθ(x)−µy)

⊤] → 0
(2)

2. (NC2) Convergence to a Simplex ETF: The cen-
tered class-means µc − µG form a Simplex Equian-
gular Tight Frame (ETF). That is, all class means are
equidistant from the global mean and equally sepa-
rated from each other:

∥µc − µG∥ = r, ⟨µ̃c, µ̃c′⟩ = − 1

C − 1
∀c ̸= c′

(3)
where µ̃c =

µc−µG

∥µc−µG∥ .

3. (NC3) Self-Duality: The classifier weights align with
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the class-means up to scaling:∥∥∥∥∥ W⊤

∥W∥F
− Ṁ

∥Ṁ∥F

∥∥∥∥∥
F

→ 0 (4)

where Ṁ = [µ1 − µG, . . . ,µC − µG].

4. (NC4) Simplification to Nearest Class-Center
(NCC) Classification: The classification decision
reduces to comparing Euclidean distances to class
means:

argmax
c

⟨wc, ϕθ(x)⟩+ bc → argmin
c

∥ϕθ(x)− µc∥2

(5)

5. (NC5) Separation of ID and OOD: The simplex ETF
created due to the neural Collapse is orthogonal to the
OOD inputs. Formally, if xood ∼ Pood, then the av-
erage feature µood

G = E[ϕθ(xood)] is orthogonal to the
class mean µc, where c ∈ [1, 2, ......, C] as described
by Eqn. 6.

⟨µc,µ
ood
G ⟩

||µc||2||µood
G ||2

→ 0,∀c (6)

While the first four properties appeared in [18], the last
property related to the OOD detection was proposed by [1].
The last property suggests that ID is separable from OOD
based on the measurable property of the DNN.
Definition of Energy Score. The energy score is a post-hoc
OOD detection method proposed by [13] that leverages the
connection between the output logits of a DNN and the con-
cept of energy in statistical physics. Given a DNN classifier
Fθ(x) with logit outputs f1(x), . . . , fC(x) for C classes,
the energy score is defined as:

E(x) = −T · log
C∑

c=1

exp

(
fc(x)

T

)
(7)

where T > 0 is a temperature parameter.
This energy score arises from the energy-based formula-

tion of the softmax probability:

p(y = c|x) = exp(−Ec(x))∑C
j=1 exp(−Ej(x))

, (8)

where Ec(x) = −fc(x) is the class-specific energy. The to-
tal energy E(x) measures the compatibility between the in-
put x and the model, assigning lower energy to more likely
(i.e., in-distribution) samples.

In OOD detection, S(x) = −E(x) is used as a score
function with the goal of setting a threshold τ to distin-
guish between Pid and Pood. Unlike softmax confidence,
the energy score has a stronger theoretical foundation and
empirically shows better separation between ID and OOD
distributions.

3. Energy Score Under Neural Collapse
We begin by asking: How does the energy score behave

for ID and OOD inputs under the assumption of Neural Col-
lapse (NC)? To investigate this, let h = ϕ(x) denote the
feature from the penultimate layer of a DNN for an input
x. With a linear classifier defined by weight matrix W and
bias b, the resulting logits are:

z = Wh+ b (9)

Under perfect Neural Collapse, specifically properties
NC1 and NC4, the feature vector h collapses to the class
mean µc, where c is the predicted class of x. This leads to
the centered class mean representation:

µ̃c = µc − µG = h− µG (10)

where µG is the global mean. Substituting into Eqn. 9, the
logit for class c′ becomes:

zc′ = wT
c′µ̃c +wT

c′µ̃G + b (11)

From NC3, the classifier weights are aligned with the
centered class means. Writing W = [wT

1 , . . . ,w
T
C ]

T , we
have:

WT

∥W∥F
=

Ṁ

∥Ṁ∥F

⇒ WT =
∥W∥F
∥Ṁ∥F

Ṁ

⇒ wc = αµ̃c

(12)

where Ṁ is the matrix of centered class means and α =
∥W∥F

∥Ṁ∥F
is a model-dependent scaling constant.

From NC1, the inner product between class means fol-
lows:

µT
c µc′ =

{
r2, if c = c′

− r2

C−1 , if c ̸= c′
(13)

Substituting this into Eqn. 11, we find that the logit for
class c′ simplifies to:

zc′ =

{
αr2 +K, if c = c′

− αr2

C−1 +K, otherwise
(14)

where K = αµT
c′µG + b is a constant shared across all

classes.
This yields the energy score for ID inputs:

EID(x) = − log

[
exp(αr2) +

C−1∑
i=1

exp

(
− αr2

C − 1

)]
−K

= − log

[
exp(αr2) + (C − 1) exp

(
− αr2

C − 1

)]
−K

(15)
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This expression is constant for all ID inputs under perfect
NC. To compute the energy score for OOD inputs, we con-
sider the fifth property of Neural Collapse, which implies
orthogonality between any class mean µc and the OOD fea-
ture vector µood, i.e., µT

c µ
ood = 0. Since wc ∝ µc, it fol-

lows that wT
c µ

ood = 0 for all c. Hence, the logit for every
class becomes:

zc′ = K (16)

which gives the following energy score for OOD inputs:

EOOD(x) = − log

[
C∑
i=1

exp(K)

]
= −K + log(C) (17)

Thus, the energy gap between ID and OOD inputs is:

∆E = EIID − EID

= log

[
exp(αr2)

C
+

(
1− 1

C

)
exp

(
− αr2

C − 1

)]
(18)

If αr2 is sufficiently large, the second term becomes neg-
ligible, and the gap simplifies to:

∆E ≈ αr2 − log(C) (19)

This implies that the separation between ID and OOD en-
ergy scores increases with the norm of the class means r,
which also corresponds to the feature norm. Therefore, fea-
ture scaling can significantly improve energy-based separa-
tion under the Neural Collapse regime.

Obtain 
Principal 

Feature Space 
through PCA

(1)Obtain 
Features

(2) Project onto 
Principal 

Feature Space

(3) Compute 
Scaling 
Factor

(4) Compute 
Cosine Logits with 

Scaled Features

(5)Compute
Energy 
Score

Setup Inference Time

Figure 2. Steps for OOD detection with ENCORE.

3.1. ENCORE for OOD Detection

Motivated by the observation that, under the Neural Col-
lapse (NC) regime, scaling feature vectors improves sepa-
ration between ID and OOD inputs, we propose ENCORE,
a principled approach for energy-based OOD detection.
Since practical DNNs are rarely trained to full convergence,
the assumptions of perfect Neural Collapse may not hold.
To address this, ENCORE aims to modify the model’s be-
havior at inference time to more closely emulate the struc-
ture imposed by NC.

Recall that the third NC property (NC3) asserts that the
classifier weights are aligned with the class means. When
combined with the first NC property (NC1), which states

that all features from a given class collapse to their respec-
tive class mean, this suggests that the weight vector corre-
sponding to the predicted class should be linearly aligned
with the feature vector. Therefore, the cosine similarity be-
tween the feature and class weight vectors emerges as a nat-
ural surrogate for the logit.

Beyond alignment, this formulation offers a key practical
benefit: NC1 also implies that feature vectors should be of
equal norm, a condition that is often violated in practice. By
using cosine similarity, we remove norm dependence from
the logits, isolating the angular component that better re-
flects class identity. The benefit of normalization is also
emphasized in works like [11, 20]. Furthermore, introduc-
ing an explicit control over the feature norm via a scaling
parameter κ allows us to modulate the separation between
ID and OOD inputs. The resulting logit (which will hence-
forth be referred as cosine logits) for class c is defined as:

zc = κ cos θc = κ
wT

c h(x)

∥wc∥2∥h(x)∥2
(20)

Here, θc is the angle between the feature and weight vec-
tor for class c. This leads to the following energy score:

E(x) = − log

[
C∑
i=1

exp(κ cos θi)

]
(21)

While this construction does not explicitly enforce the
ETF simplex structure posited by NC2, it does yield an
equinorm angular configuration, which empirically en-
hances robustness. In proposition 1, we formally show, un-
der assumption of deviation from the assumptions of neural
collapse, how the energy gap between ID and OOD gets
affected by the scaling factor, and assumed deviations.

Proposition 1 Let cosine logits be of the form zc =
κ cos(θc), as defined in Eqn. 20. Assume: i) the weights
{wc}Cc=1 and class means µc form a unit-norm Equiangu-
lar Tight Frame (ETF), with pairwise inner product ρ < 1
ii) an ID input has angle θ ≈ 0 with its correct class weight
wy , so zy = κ cos(θ), and for all c ̸= y, zc = κρ iii) an
OOD input has approximately equal angle Φ ≈ 90◦ with
all class weights, so zc = κ cos(Φ) ≈ κϵ. Then the energy
gap between ID and OOD satisfies:

∆E = Eood(ϵ)− Eid(θ)

≤ − logC + κ

(
1− θ2

2
− ϵ

)
We provide the proof in the supplementary section 1. This
shows that increasing the deviation of the features from the
class means (represented by θ) or decreasing the angle be-
tween OOD features and class means (represented by Φ and
ϵ) reduces the separation between ID and OOD leading to
increased false negatives.
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To further refine the energy score, we leverage NC5,
which suggests that OOD features are ideally orthogonal
to the span of ID class means. This property has been uti-
lized in prior work [1, 21] to derive orthogonal projections
for OOD detection. In ENCORE, we incorporate this idea
by making the feature scaling parameter sample-adaptive.
Specifically, we scale the cosine logits by the ratio of the
projection of the feature vector onto the ID subspace to its
total norm, multiplied by a fixed constant λ (which we will
be referred as scaling constant). Let ∥xp∥ denote the norm
of the projection of x onto the ID subspace. Then the scal-
ing factor is given by κ = exp (λ∥xp∥

∥x∥ ) and the final energy
score used in ENCORE becomes:

E(x) = − log

[
C∑
i=1

zi

]

= − log

[
C∑
i=1

exp

(
exp

(
λ
∥xp∥
∥x∥

)
cos θi

)] (22)

This adaptive rescaling enhances the separation between
ID and OOD inputs by attenuating the influence of features
that are weakly aligned with the ID feature space. A poten-
tial concern with this approach is numerical overflow under
FP16 precision, particularly due to the exponential scaling.
However, from Eqn.20, we observe that the magnitude of
the scaled logit is bounded as |zc| ≤ κ. This ensures nu-
merical stability as long as κ and in turn the scaling con-
stant λ remains within a safe range. In practice, we find that
setting λ between 0 and 11 does not lead to overflow dur-
ing logit computation. Moreover, as demonstrated in Fig.4
and discussed in Sec. 5, the optimal value of the scaling
constant λ converges rapidly due to the exponential func-
tion and typically remains around 3 which is well below the
critical threshold. Therefore, the proposed scaling mecha-
nism is both effective and numerically stable in FP16 envi-
ronments.

To summarize the steps for OOD detection with EN-
CORE (as illustrated in Figure 2): during setup phase, we
extract penultimate layer features and compute the princi-
pal feature subspace. During inference: 1) we extract the
penultimate layer feature 2) project the feature onto princi-
pal feature space 3) compute scaling factor κ 4) compute
cosine logits according to Equation 20 5) compute OOD
score with Equation 22.

4. Experimental Results

In this section, we evaluate the performance of our
method ENCORE across OOD benchmarks against diverse
baselines. In line with existing literature, we compute the
False Positive Rate at 95% true positive rate (FPR95) and
Area Under Receiver Operating Curve (AUROC). A lower

FPR95 and a higher AUROC indicates better performance.
Unless stated otherwise, FPR means the same as FPR95.
OOD Benchmarks. We adopt the widely known
OpenOOD [24, 27] benchmark. We run for both the
CIFAR and Imagenet benchmarks of OpenOOD. For each
benchmark, the OOD datasets are split into two groups -
near-OOD and far-OOD. We report for both the individual
datasets and the aggregate performance on near-OOD and
far-OOD.
DNN Architectures. We test CIFAR on Resnet 18 [7] and
use RepVGG [2] as an alternate architecture. To test perfor-
mance of ENCORE for both convolutional and transformer
architectures, we run experiments for the Imagenet bench-
mark on the ConvNext [15] and use Vision Transformer [4]
as an alternate architecture.

4.1. Evaluation on CIFAR-10

Table 1 compares ENCORE with the baselines for
Resnet 18 architecture. We can observe that ENCORE
achieves state-of-the-art performance in terms of FPR95
and AUROC. To better understand the position of ENCORE
with respect to the baselines, we highlight some specific
groups.
ENCORE vs MSP/Energy/GEN: All the three baselines
operate in the logit space. MSP relies on the maximum soft-
max probability, discarding information about rest of the
classes. Energy, in contrast, utilizes logits from all classes
to better separate ID and OOD inputs. GEN takes an inter-
mediate approach, demonstrating that using the top M soft-
max probabilities improves OOD detection.

Unlike these methods, which directly uses functions of
the output logits for OOD detection, ENCORE enhances
the separability between ID and OOD by scaling in the fea-
ture space. This is evident from the substantial improve-
ment of ENCORE over MSP by 17.34% in FPR95 on near
OOD datasets. Similarly, ENCORE outperforms Energy
and GEN by 31.91% and 21.62%, respectively. For far
OOD datasets, ENCORE achieves average improvements
of 10.11%, 19.3%, and 12.48% over MSP, Energy, and
GEN. This proves usefulness of ENCORE compared to
these approaches on CIFAR10 benchmark.

ENCORE vs KNN/FDBD For benchmarking KNN, we
follow the hyperparameter setup from [20], using k = 50
nearest neighbors across the entire training dataset. KNN
relies on computing the average distance to these neigh-
bors, requiring storage of the entire training set’s features.
In contrast, ENCORE only uses the train set for estimat-
ing the feature space through Principal Component Anal-
ysis (PCA), drastically reducing memory overhead while
simplifying the detection process. For a fixed number of
classes, required memory of ENCORE is constant while for
KNN, it increases with the size of the dataset. Despite be-
ing significantly more lightweight, ENCORE outperforms
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Table 1. Comparison of ENCORE with baseline approaches on the
CIFAR10 benchmark using ResNet-18, showing results for Near-
OOD and Far-OOD datasets.

Near OOD Far OOD
FPR ↓ AUROC ↑ FPR ↓ AUROC ↑

MSP 53.61 87.69 31.22 91.03
OpenMax 47.19 87.20 29.32 89.55

ODIN 84.71 80.37 61.02 87.24
MDS 46.04 86.79 30.26 90.21

RMDS 42.26 89.57 24.31 92.46
GRAM 93.88 52.43 69.34 69.70
Energy 68.18 86.95 40.41 91.80

GradNorm 95.26 53.93 89.35 58.65
React 71.07 86.51 42.08 91.09
ViM 47.69 88.55 25.68 93.17
KNN 39.42 88.73 23.73 93.13
DICE 80.52 77.68 53.78 85.44
ASH 88.98 74.20 76.36 78.46
GEN 57.89 87.80 33.59 91.57

FDBD 36.62 90.45 23.49 93.20
CoRP 38.60 90.46 22.48 94.12

ENCORE (Ours) 36.27 91.23 21.11 94.56

KNN, albeit slightly, in terms of AUROC. For KNN, this
improvement is 1.43% for far-OOD benchmark and 0.5%
for near-OOD benchmark. We observe a similar case for
the FDBD which uses the train set to compute the average
feature. ENCORE outperforms FDBD by 0.77% on near-
OOD and 1.36% on far-OOD benchmark.

ENCORE vs ViM The similarity between ViM and EN-
CORE is that both employ the information related to princi-
pal feature-space of the training inputs. While ViM uses the
energy in the null-space, ENCORE focuses on the principal
feature space. Apart from that, ViM uses the energy in the
null-space of the features as an extra logit. ENCORE uses
the percentage of energy in the feature space for adaptively
setting the scaling factor. As can be seen from Table 1,
this improves the OOD detection significantly for CIFAR10
benchmark. For near-OOD, this improves by 11.42% in
terms of FPR. For far-OOD, this improves by 4.57%.

Table 2. Comparison of ENCORE with baseline approaches on
the ImageNet benchmark using ConvNeXt-Small, showing results
for Near-OOD and Far-OOD datasets.

Near OOD Far OOD
FPR ↓ AUROC ↑ FPR ↓ AUROC ↑

MSP 75.74 77.58 69.98 83.12
React 75.79 72.61 71.11 77.55
ViM 70.13 78.66 28.36 90.71
KNN 67.60 77.90 28.27 92.23
DICE 94.41 59.96 84.04 71.91
ASH 98.70 42.29 97.24 49.43
GEN 67.08 77.33 45.95 90.08
CoRP 67.51 72.13 29.82 89.89

ENCORE (Ours) 66.01 77.70 28.53 90.72

4.2. Evaluation on Imagenet Benchmark

Table 2 presents a comprehensive comparison of EN-
CORE against state-of-the-art OOD detection baselines on
the ImageNet benchmark using the ConvNeXt backbone.
Across a wide range of OOD datasets - including both near
and far shifts - ENCORE demonstrates consistent and su-
perior performance. On the Near OOD splits, ENCORE
achieves the lowest FPR (66.01%), outperforming all base-
lines, including ViM and KNN, while maintaining com-
petitive AUROC score (77.70%). This suggests that EN-
CORE is effective in detecting subtle distribution shifts
where OOD inputs resemble ID samples. For the Far OOD
sets, on average, ENCORE again achieves competitive FPR
(28.53% compared to the best 28.27%) and strong AUROC
scores (90.72% aas compared to the best 92.23%), show-
ing its robustness even when the semantic gap between ID
and OOD data is large. From the detailed resutls provided
in the supplementary Sec. 5, we observe that ENCORE
shows strong performance across different benchmarks,
outperforming baselines that rely on activation suppression
(ASH), feature thresholding (React), and logit-based uncer-
tainty (GEN). The neural-collapse inspired design of EN-
CORE allows it to achieve this competitive or superior per-
formance across benchmarks.

4.3. Comparison of Latency

We evaluate the inference latency of ENCORE and com-
pare it with two of the closest performing OOD detection
methods- ViM and KNN. All measurements are conducted
on the RepVGG-a2 architecture using an NVIDIA A100
GPU with a batch size of 1024. As shown in Table 3, EN-
CORE achieves the lowest latency at 135,ms, significantly
outperforming both ViM (155,ms) and KNN (354,ms). This
demonstrates that ENCORE not only provides competitive
detection performance but also offers superior computa-
tional efficiency, making it well-suited for high-throughput
deployment scenarios.

Table 3. Inference latency (ms) for different OOD detection meth-
ods on RepVGG-a2 with batch size 1024.

Method Latency (ms)

ENCORE 135
ViM 155
KNN 354

4.4. Ablation Study

4.4.1 Number of principal components

We perform ablation study to understand the effect of the di-
mension of the principal feature-space. As can be observed
from Figure 3, increasing the dimension (number of com-
ponents of principal component analysis) drops the FPR.
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Figure 4. Variation of FPR with varying the scaling constant (λ)

With above 300 dimensions, the FPR stabilizes. In general,
we observe that for stable performance, the number of di-
mension should be chosen to achieve at least 95% explained
variance of the ID features. In our experiments, we keep the
explained variance 99%.
4.4.2 Varying the scaling factor

The key observation ENCORE is that uniformly scaling up
the features can achieve good separation between ID and
OOD. We run ablation study to understand the effect of the
scaling constant (λ) which controls the scaling factor. We
vary the scaling constant between 0 and 10. We observe
that with scaling factor of zero (0) - no scaling - the FPR
is highest. Increasing the scaling constant quickly drops
the FPR and it saturates at around value of 3. In all our
experiments, we use a scaling constant of 3.

4.4.3 Ablation Study for Different Components of EN-
CORE

To better approximate the equinorm structure associated
with neural collapse, ENCORE incorporates both feature
norm scaling and cosine similarity between the scaled fea-
ture vectors and class weight vectors. Table 4 presents an
ablation study of these components on the ImageNet bench-
mark using the ViT-Huge architecture. The results show
that using cosine similarity alone yields the weakest per-
formance in both near- and far-OOD scenarios. Feature
norm scaling alone leads to a noticeable improvement, but
the best performance is achieved when both components are
combined. This indicates that the joint use of cosine sim-
ilarity and norm scaling more effectively induces an ETF-

Table 4. Ablation study for different components of ENCORE on
the ImageNet benchmark.

Near OOD Far OOD
FPR ↓ AUROC ↑ FPR ↓ AUROC ↑

Only Norm Scaling 59.68 85.15 37.76 90.37
Only Cosine Similarity 79.27 73.88 60.85 78.32
Cosine Similarity+Norm Scaling 43.55 89.47 14.62 96.89

like geometry in the feature space, thereby enhancing the
separation between ID and OOD inputs.

4.5. Full-spectrum OOD Detection

We evaluate ENCORE under the Full-Spectrum Out-of-
Distribution (FS-OOD) detection framework [26], which
distinguishes semantic OOD samples from those caused by
mere covariate shifts. In this setup, covariate-shifted inputs
are considered ID, making FS-OOD a more challenging and
realistic benchmark. Table 5 highlights that ENCORE sets
a new state-of-the-art on the Imagenet benchmark across
both near-OOD and far-OOD categories. Specifically, EN-
CORE achieves the best AUROC in 3 out of 5 OOD datasets
and the lowest FPR in 4 out of 5, indicating its strong ca-
pability to separate semantic anomalies while being toler-
ant to covariate shifts. In the near-OOD regime, ENCORE
significantly outperforms all baselines, achieving the low-
est FPR (79.61%) and highest AUROC (59.63%), show-
ing its precision in not misclassifying covariate-shifted data.
On the far-OOD datasets such as Openimage-O and Tex-
tures, ENCORE also secures top AUROC scores (77.10%
and 73.54%, respectively), outperforming established meth-
ods like ViM and GEN. Notably, while methods like ASH
and DICE occasionally exhibit lower FPR in isolated cases,
they suffer from drastically poor AUROC, often below
50%, indicating poor discrimination. In contrast, ENCORE
achieves a consistent trade-off, maintaining high AUROC
scores without excessively high FPRs, thereby excelling
in the FS-OOD setting. Overall, while no single base-
line performs consistently well across all metrics, ENCORE
emerges as the most reliable method across the full OOD
spectrum.

4.6. Results on Alternate Architectures

As shown in Tab. 7, ENCORE performs very strongly
even for vision transformer architecture. It consistently out-
performs the SOTA approaches like [14], [6], [5] on both
near- and far-OOD settings by upto 1.85% in terms of FPR.
This serves to establish that ENCORE works for both con-
volutional and transformer architectures making it model-
agnostic and dependent on DNN’s properties only. Simi-
larly, for the CIFAR benchmark, we observe in Tab. 6 that
ENCORE outperforms the SOTA approaches for RepVGG-
a2 architecture.
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Table 5. Evaluation of ENCORE in the Full-spectrum OOD Detection setup on the ImageNet benchmark using ConvNeXt-Small. Results
are grouped by Near-OOD and Far-OOD datasets as per the FS-OOD protocol.

SSB-Hard NINCO Near OOD iNaturalist Textures OpenImage-O Far OOD
FPR ↓ AUROC ↑ FPR ↓ AUROC ↑ FPR ↓ AUROC ↑ FPR ↓ AUROC ↑ FPR ↓ AUROC ↑ FPR ↓ AUROC ↑ FPR ↓ AUROC ↑

MSP 89.22 55.17 83.51 62.71 86.37 58.94 62.47 74.91 96.48 59.78 86.30 65.80 81.75 66.83
React 91.11 47.68 83.94 55.40 87.52 51.54 76.10 55.89 93.31 58.49 84.36 57.29 84.59 57.23
ViM 91.69 51.23 79.46 63.72 85.57 57.48 47.62 78.28 63.93 74.76 56.21 69.70 55.92 76.71
KNN 91.10 49.69 76.09 61.90 82.60 55.80 50.88 77.40 64.39 70.17 55.66 75.14 56.97 74.24
DICE 95.11 46.54 96.85 47.36 95.98 46.95 91.04 51.00 85.51 65.82 89.69 58.28 88.74 58.36
ASH 97.30 40.02 96.44 43.62 96.87 41.82 96.04 36.85 90.34 62.79 97.38 45.19 94.59 77.71
GEN 90.97 48.00 75.55 58.84 83.26 53.42 47.70 80.92 91.22 65.30 65.99 71.18 68.31 72.47

ENCORE (Ours) 85.33 54.75 73.89 64.50 79.61 59.63 52.84 66.27 60.80 73.54 54.17 77.10 55.94 72.30

Table 6. Comparison of ENCORE with baseline approaches on
the CIFAR10 benchmark using RepVGG-A2, showing results for
Near-OOD and Far-OOD datasets.

Near OOD Far OOD
FPR ↓ AUROC ↑ FPR ↓ AUROC ↑

Energy 72.07 86.94 49.18 90.89
GradNorm 98.33 40.24 89.36 58.47

React 57.97 80.16 58.34 77.57
ViM 38.47 89.57 29.01 91.56
KNN 36.20 90.70 28.46 91.95
DICE 79.84 82.63 54.70 89.21
ASH 97.03 60.06 88.74 69.09
GEN 70.96 87.05 48.71 90.77

FDBD 34.24 90.52 29.55 91.89
CoRP 36.35 89.50 31.14 90.87

ENCORE (Ours) 34.72 90.77 28.35 92.89

Table 7. Comparison of ENCORE with baseline approaches on the
ImageNet benchmark using ViT-Huge, showing results for Near-
OOD and Far-OOD datasets.

Near OOD Far OOD
FPR ↓ AUROC ↑ FPR ↓ AUROC ↑

MSP 56.47 84.15 31.51 93.27
React 44.86 88.99 15.11 96.33
ViM 45.41 88.77 21.32 93.74
KNN 61.54 80.64 26.03 94.16
DICE 67.01 77.01 39.56 87.95
ASH 84.99 64.18 72.99 76.43
GEN 44.14 88.86 14.69 96.66
CoRP 45.40 87.78 15.26 96.15

ENCORE (Ours) 43.55 89.47 14.62 96.89

4.7. Contrast with Similar Approaches

Contrast with Feature Scaling Approaches Several
OOD detection methods aim to reshape features based
on training or instance-wise statistics to improve ID-OOD
separability. [19] introduced feature thresholding using ID
training statistics, while [3] enhanced high-magnitude fea-
tures and suppressed low-magnitude ones. However, [23]
showed that such suppression can harm OOD performance,
proposing selective scaling instead. In contrast, ENCORE
avoids thresholding or selective scaling and instead applies
uniform feature scaling, which proves effective under neu-
ral collapse assumptions. This is further improved by using
cosine similarity with class weights as a proxy for logits.

Table 8. Comparison of ENCORE with similar approaches on
the ImageNet benchmark using ViT-Huge-14, showing results for
Near-OOD and Far-OOD datasets.

Near OOD Far OOD
FPR ↓ AUROC ↑ FPR ↓ AUROC ↑

SCALE 58.24 77.52 26.53 88.51
NECO 55.55 79.64 24.25 89.96

ENCORE (Ours) 43.55 89.47 14.62 96.89

Performance differences among these methods are shown
in Table 8.

Contrast with NECO [1] first utilized the concept of
neural collapse for OOD detection. The fifth property of
neural collapse is suggested by [1]. The core idea for OOD
detection by [1] was to use the ratio (scaled by the max-
imum logit) between the norm of the features projected
onto the principal feature space and the norm of the fea-
tures themselves. ENCORE takes a completely different
approach. ENCORE still uses this ratio as according to the
fifth property of neural collapse, this can discriminate be-
tween the ID and OOD inputs. But this is used to adaptively
scale the features. The core ideas of ENCORE is: i) we can
scale the features to better separate the ID and OOD inputs
based on the properties of neural collapse ii) using cosine-
similarity between the features and weight vectors is better
proxy for the logits for OOD detection. The difference in
approach with [1] also gets clear from the difference in per-
formance as highlighted in Table 8.

5. Conclusion
In this work, We revisited energy-based OOD detection

through the lens of neural collapse and showed that fea-
ture scaling can improve ID-OOD separation. Building
on this insight, we proposed ENCORE, a post-hoc detec-
tion method that combines cosine similarity and adaptive
feature scaling to approximate the geometry of neural col-
lapse. ENCORE achieves competitive or superior perfor-
mance across multiple benchmarks and architectures, all
without requiring model retraining or architectural modi-
fications. While ENCORE focuses on properties induced
by neural collapse, future work may explore combining it
with other structural traits of deep networks or adapting its
principles to non-classification tasks, broadening its appli-
cability.
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