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Abstract

As the spectrum becomes increasingly crowded, quick and reliable authen-
tication of wireless devices is critical to avoid harmful interference to in-
cumbents of the spectrum. Radio fingerprinting achieves fast waveform-level
authentication by distinguishing devices based on unique hardware imper-
fections in the radio circuitry. However, existing approaches can fingerprint
only one signal in a specific band, making them inapplicable in real-world
scenarios where multiple signals coexist in spectrum bands. This paper intro-
duces Multi-band Multi-device Radio Fingerprinting (M2RF) to address this
challenge. Specifically, we propose a learning-driven segmentation algorithm
to directly process in-phase/quadrature (I/Q) samples coming from the re-
ceiver and assign each I/Q sample to a specific radio. In contrast to existing
approaches, M2RF simultaneously identifies and locates in the spectrum multi-
ple devices that emit overlapping signals and avoids the burden of processing
data, making the overall approach with reduced overhead and faster. Our ap-
proach can be generalized to different channels and signal bandwidths with-
out retraining, making it scalable. Experiments in three different spectrum
scenarios under 2 transmission conditions and with 15 radio transmitters
demonstrate the effectiveness of M2RF, achieving up to 99.56% of F1-score,
and 92.44% detection rate of malicious users with only a 2.72% mean Miss
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Rate (MR). Dataset and code will be shared for reproducibility and a demo
video is available (M2RF – Demo Video).

Keywords: RF Fingerprinting, Multi-Device Authentication, Semantic
Spectrum Segmentation, Dynamic Spectrum Sharing, Anomaly Detection

1. Introduction

The sheer growth of the Internet of Things (IoT) is quickly saturating un-
licensed spectrum bands [1]. As unlicensed bands become saturated, spectrum
sharing will become one of the very few options to sustain the IoT growth
in the years to come [2, 3, 4, 5]. The key issue is that today, IoT operators
that want to share spectrum with licensed users – also called incumbents –
must contact database systems located in the cloud, which determine if the
spectrum is available based on geographical coordinates [6]. This centralized
manual approach lacks scalability and does not allow for fine-grained real-time
spectrum management. Conversely, a scalable and effective solution would be
to let IoT devices opportunistically discover which spectrum sub-bands are
currently available among ongoing licensed transmissions, provided they do
not cause harmful interference to incumbents [7].

It is easy to observe that dynamic spectrum access systems will create
fundamentally new security challenges where incumbents must be protected
by secondary users not abiding by spectrum rules. To prevent such issues,
spectrum must be continuously monitored to make sure only authorized de-
vices are using the spectrum. Traditional wireless authentication systems
such as WPA for Wi-Fi [8] or 5G-AKA for cellular networks [9] are based
on cryptography or password-based authentication. As such, they operate
primarily on the network or application layers, failing to meet the real-time
requirements for spectrum sharing [10], [11]. In addition, these methods
are proven insufficient against various attacks, such as spoofing, replay, and
impersonation attacks [12, 13, 14].

In recent years, radio fingerprinting has emerged as a viable approach
to spectrum-level authentication. Specifically, radio fingerprinting leverages
the inherent hardware imperfections present in every radio circuitry [15, 16,
17, 18] to form a unique and unforgeable "fingerprint" that can authenticate
devices [19]. By exploiting these characteristics, radio fingerprinting offers a
security solution that is resistant to attacks such as MAC address spoofing
and identity cloning [20].
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Existing work – discussed in details in Section 2 – has a series of core limita-
tions that make it unable to perform real-time spectrum-level authentication.
Specifically, Figure 1 shows the fundamental difference between prior work
and our proposed approach. First, current approaches only classify one sig-
nal in a given channel of interest. Conversely, multiple signals are usually
overlapping in adjacent bands making the classification problem harder. Sec-
ond, conventional methods assume prior knowledge of operating frequency of
transmitters and only classify signals in that specific frequency band. How-
ever, signals may be partially observed by the receiver, e.g., because they are
partially outside the operating bandwidth.

Figure 1: Traditional Radio Fingerprinting vs M2RF.

This paper changes the current state of the art by proposing the first ever
spectrum-level authentication system named Multi-band Multi-device Radio
Fingerprinting (M2RF), where multiple devices are located and identified
in the same spectrum band using spectrum segmentation. The right side of
Figure 1 shows at a very high level the main objective of M2RF. The proposed
approach directly operates on unprocessed in-phase/quadrature (I/Q) inputs
coming from the radio receiver front-end, thus eliminating pre-processing
steps. The proposed spectrum segmentation model, based on a Deep Neu-
ral Network (DNN), has been specifically designed to handle dynamic signal
and channel bandwidths through the integration of a non-local block, which
captures long-range dependencies across frequency and distinguishes subtle
differences in RF signals via a self-attention mechanism. In addition, M2RF
incorporates a combined loss function that integrates both local-level and
region-level features, further enhancing its ability to learn intricate signal fea-
tures while maintaining consistent accuracy. An aggregation block is built to
support wideband classification by combining predictions across overlapping
frequency bands, allowing the model to span and accurately identify signals
across different frequency segments.

The unique features of our solutions are very promising on different open
problems. From one side, it is possible to detect in real-time the intrusion
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tentative from malicious nodes. Another really interesting perspective pro-
vided by our approach is the capacity to "locate" in the spectrum the activity
of malicious devices, posing the fundamentals of advanced anti-jamming so-
lutions, targeting with high precision the "malicious" operating frequencies.
From another perspective, our approach permits to better manage the shared
resources, due to the real-time information of who (device) is where (in the
spectrum).
Summary of Novel Contributions
• We propose a real-time technology-independent radio fingerprinting ap-
proach named M2RF that can simultaneously fingerprint multiple devices co-
existing in the shared spectrum. M2RF includes (i) a scalable dataset gen-
eration pipeline that can represent real-world spectrum conditions such as
overlapping signals, and (ii) an energy-efficient DNN optimized for resource-
constrained devices. To the best of our knowledge, this is the first work
proposing a simultaneous multi-device radio fingerprinting system;
• We introduce a new anomaly detection mechanism to detect adversary and
interference in spectrum sharing scenarios. We leverage Total Variation (TV)
analysis to identify attacks by detecting irregularities in the DNN output.
Specifically, it exploits the fact that the DNN produces noisy and randomized
outputs when fed with an unseen signal. This means that real-time detection
is realized without prior knowledge of the specific attacks strategy;
• We evaluate the performance of M2RF using a comprehensive 82 GB dataset
of over-the-air (OTA) data from 15 identical Wi-Fi cards, which represents
the worst case for radio fingerprinting as identical devices may have closer
fingerprints [21]. In addition, we have collected data via wired connection
to have data unaffected by the wireless channel [22]. To simulate real-world
threats, we consider both informed and uninformed adversaries. For informed
adversary, we collected data from additional identical Wi-Fi devices having
full knowledge of the authentication approach. For uninformed adversary, we
collected data from different Wi-Fi cards. Moreover, we collect other wireless
technologies as interference (e.g., BLE, LTE, Zigbee) to evaluate the M2RF
performance in congested multi-technology environments;
• Our experimental results show that M2RF achieves F1-score of 94.99% and
Intersection over Union (IoU) of 90.54% with over-the-air non-overlapping
signals. In the challenging scenario of overlapping signals, M2RF achieves F1-
score of 77.06% and IoU of 63.39% without retraining and/or fine-tuning.
Moreover, M2RF detects adversaries with an accuracy of 92.44%, demonstrat-
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ing resilience against both informed and uninformed attacks. When other
technologies are present, M2RF achieves an overall accuracy of 81.52%. A
demo video of M2RF is available (M2RF – Demo Video).

2. Background and Motivation

Radio fingerprinting is a technology that authenticates wireless devices
based on unique characteristics inherent in their transmitted radio signals
[23]. The key idea is based on the fact that each radio device has its
unique hardware imperfections in its circuitry, which manifest as subtle yet
measurable differences in signal transmission. Compared to conventional
cryptography-based methods, radio fingerprinting offers a more robust au-
thentication mechanism since these physical properties are inherently un-
clonable. Furthermore, by operating directly at the physical layer, radio
fingerprinting provides greater agility and computational efficiency without
requiring full-stack protocol operations.

With the rapid development of IoT, there is an increasing need of wire-
less communication service to connect massive devices to network. To maxi-
mize spectrum efficiency in massive connectivity scenarios, dynamic spectrum
management has been proposed to enable opportunistic signal transmission
in available sub-bands [24]. To this end, a scalable and rapid authentica-
tion method is required to identify massive IoT devices in real time. The
computational agility inherent in waveform-level operations makes radio fin-
gerprinting a promising candidate for this purpose.

However, existing radio fingerprinting approaches fail to address the fol-
lowing challenges in spectrum sharing:
• Dynamic Operating Frequency. Existing approaches involve band fil-
tering and pre-processing to remove interference and channel effect before
classification [25], which assumes prior knowledge of the bandwidth and op-
erating frequency of transmitted signal. However, in the spectrum sharing
system, devices can dynamically select their operating frequencies based on
spectrum availability. Therefore, the target signal may not operate at the
same frequency as assumed by the radio fingerprinting method, or may even
fall partially outside the filter bandwidth, causing the algorithm to fail in
identifying the target device.
• Simultaneous Transmissions. In spectrum sharing, multiple devices can
transmit simultaneously within the same spectrum. This creates a significant
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scalability challenge for existing radio fingerprinting methods, as current ap-
proaches can only authenticate one device at a time [22]. To classify multiple
signals in real time, these methods must iteratively process multiple signal in-
stances across different operating frequencies, which introduces considerable
computational overhead and latency.
• Uncontrolled Interference. Another significant challenge in spectrum
sharing is that the uncontrolled spectrum environment can have considerable
noise and interference which can compromise the accuracy of fingerprinting.
As the spectrum is an open resource, interference may exist intentionally
or unintentionally. Current fingerprinting approaches designed to work in
controlled environments and with minimal interference can fail to generalize
to the complex and varying environment [26].

These limitations motivate us to create a brand-new radio fingerprinting
design that can simultaneously identify multiple signals in the spectrum in
real time. Specifically, we aim to address the following research questions:
• RQ1 – How to properly model and process the complex spectrum
environment?

A typical data pre-processing pipeline in conventional radio fingerprinting
involves shifting signals to the operating frequency, removing noise outside
the band of interest, and processing the signal within the band for feature
extraction [22]. This approach ensures that the data is controlled and pu-
rified to improve classification performance but requires prior knowledge of
operating frequency and can only identify one radio at a time, which does not
meet the requirements of spectrum sharing environments. To overcome this
limitation, a new pipeline is needed to model and process complex spectrum
environments where multiple radio transmissions do not match the expected
operating frequency or are only partially observable by the receiver.

To address RQ1, we create a new data pre-processing pipeline – de-
scribed in Section 4.1 – that can simulate complex spectrum conditions with
controlled data transmission and pre-processing. This pipeline, similar to
conventional radio fingerprinting approaches, creates a purified signal repos-
itory that enables the algorithm to effectively learn useful features in the
signals of interest. However, it is distinct from other radio fingerprinting
methods by augmenting and stitching multiple purified signals to simulate
real spectrum conditions, where multiple signals coexist, overlap, or are par-
tially observable.
• RQ2 – How can simultaneous radio device authentication be
achieved in this spectrum environment?

6



A naive approach to achieving multiple device authentication would be
to extend current radio fingerprinting methods to iteratively process each
signal in the spectrum. However, this approach requires additional complex-
ity to identify the center frequency of each radio transmission, as signals are
transmitted dynamically throughout the spectrum. Moreover, the computa-
tional burden increases significantly when massive transmissions occur within
the same spectrum, resulting in substantial latency. Therefore, developing
a new fingerprinting paradigm that can achieve simultaneous multi-device
authentication is a critical research challenge in dynamic spectrum sharing.

In Section 4.2, we address RQ2 by leveraging a novel DNN solution based
on “semantic spectrum segmentation". The neural network is trained to
take I/Q samples as input, and directly segment waveforms in the frequency
domain. This way, it removes the complexity of per-signal processing and
hence achieving a real-time multi-device authentication.
• RQ3 – Is the new framework generalizable to different frequency
and environment?

Spectrum sharing requires real-time monitoring of an ultra-wide spectrum
band which is typically larger than the observable bandwidth of the spectrum
sensor. For example, [27] considered a scenario covering the frequency range
from 400 MHz to 6 GHz. It is infeasible to create a single fingerprinting al-
gorithm to monitor the entire 6 GHz spectrum due to hardware constraints.
A viable approach is to divide the entire spectrum into multiple channels
and leverage fingerprinting to rapidly scan these channels. However, exist-
ing radio fingerprinting methods developed in controlled environments often
struggle to generalize effectively to different environments and scenarios. For
instance, [28] reported an 82% accuracy drop when testing in real-world sce-
narios. To ensure the approach is practical in real-world applications, it is
critical to validate whether the proposed framework is generalizable.

To answer this question, we design adaptive bandwidth processing by
sweeping and aggregating fingerprinting results across multiple channels.
This approach enables the fingerprinting algorithm to be tested across differ-
ent channel bandwidths and signal bandwidths. We describe this adaptive
processing in Section 4.3.
• RQ4 – Can the algorithm detect interference and adversaries in
the spectrum?

As the spectrum is an open resource, interference may occur intention-
ally or unintentionally. For example, an unauthorized device may attempt to
occupy a channel by intentionally mimicking the behavior of authorized ra-
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dios through spoofing or replay attacks. In addition, other unknown signals
may transmit within the band and cause unintentional interference. Such
interference may cause misclassification of the fingerprinting system, hence
compromising the spectrum management. Therefore, detecting interference
and adversaries in the spectrum is as important as identifying the authorized
devices.

To address RQ4, we propose a post-processing method based on total
variation that can effectively detect anomaly in the spectrum. The key idea
is that interference will have lower certainty in the inference results, which can
be detected by checking the consistency of inference. A detailed discussion
of this method is provided in Section 4.4.

3. Threat Model and System Overview

As spectrum is an open resource, malicious traffic poses significant threats
to legitimate users. For example, adversarial devices may attempt to authen-
ticate by cloning legitimate user behavior, while unintentional interference
can occur when signals are transmitted on the same channel. Both adver-
saries and interference can severely degrade the quality of service for au-
thorized users. Therefore, an effective spectrum management requires the
algorithm not only to authenticate legitimate users but also to detect ma-
licious traffic in the spectrum. In this section, we outline these potential
threats in the spectrum, as well as how M2RF is structured to defend against
these challenges in a high level.

3.1. Threat Model
Figure 2 overviews the threat model in the dynamic spectrum manage-

ment. Alice, the authorized user, will access the network through a specific
channel with its unique hardware characteristics. On the other hand, Eve, the
adversary tries to access the network through the same channel by cloning Al-
ice’s behavior. Bob, the authenticator, continuously monitors the spectrum
to authenticate Alice and detect Eve using radio fingerprinting techniques.
In this scenario, Eve can perform different attack strategies:
1 Spoofing. This scenario involves an attacker (Eve) emulating the creden-
tials of an authorized device (Alice) by cloning identifiers such as MAC ad-
dresses. Here, Eve’s goal is to deceive the authentication system by mas-
querading as a legitimate device without replicating the hardware-specific
imperfections that are unique to Alice.
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Figure 2: Overview of interactions among Alice (authorized device), Eve (attacker),
and Bob (authenticator) to detect and prevent spoofing and replay attacks through
radio fingerprinting.

2 Replay Attacks. Eve intercepts transmissions from Alice and replays them,
aiming to deceive the system and gain unauthorized access without the need
to directly imitate Alice’s radio signal characteristics. Replay attacks exploit
captured communication sessions, assuming they will appear legitimate upon
retransmission.
3 Device Impersonation. Eve manipulates signal characteristics to closely
imitate Alice’s fingerprint. By using similar devices or attempting software-
based modifications [29], Eve aims to create a sufficiently close match to
bypass RF fingerprint detection. This approach assumes that Eve has knowl-
edge of Alice’s signal characteristics and attempts to mimic them. Still, the
unique hardware imperfections inherent to Alice’s device cannot be acquired
by Eve.

3.2. Type of Malicious Traffic
In our system, we consider three different type of malicious traffic based

on its knowledge model for the legitimate device:
Informed Adversary. Eve possesses detailed knowledge of Alice’s hardware
features, the radio fingerprinting algorithm and how the authentication is
performed by Bob. This knowledge allows Eve to adopt more sophisticated
techniques to approximate Alice’s signal characteristics.
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Uninformed Adversary. Eve has basic knowledge about the system such
as the wireless technology (e.g. Wi-Fi) but lacks specific knowledge about
Alice’s hardware imperfections and Bob’s detection mechanisms. Eve may
attempt standard spoofing or basic replay methods without insight into the
physical layer defense, relying on generic attack methods.
Interference. Eve has no knowledge about the system. It unintentionally
occupies the channel and creates malicious interference to the legitimate user.
This scenario represents a common shared spectrum situation where different
wireless technologies operate in the same frequency band (e.g. Bluetooth vs
Wi-Fi).

3.3. Defense Mechanism
In a high level, the proposed framework M2RF achieves robust authenti-

cation with following strategies:
1 Real-Time Monitoring. M2RF continuously monitors spectrum of interest,
adapts to different frequency bands and bandwidths with scanning and ag-
gregation as described in Section 4.3 for authentication of legitimate users
and detection of malicious traffic.
2 Multi-Device Authentication. As discussed in Section 4.2, M2RF leverages a
Deep Learning (DL)-driven semantic segmentation algorithm to directly label
each waveform data (I/Q samples) in the frequency domain based on their
waveform features, which results in a simultaneous labeling of all waveforms
in the channel.
3 Anomaly Detection. M2RF detects malicious traffic across multiple fre-
quency bands based on fingerprint consistency check. Compared to legiti-
mate signals, malicious signals show increased randomness in the inference
results, which can be detected by total variation as detailed in Section 4.4.

4. The M2RF Framework

To address the research questions outlined in Section 2, we propose M2RF,
a new radio fingerprinting framework for spectrum sharing. Figure 3 overviews
the main components of M2RF. The process begins with acquiring I/Q data,
followed by a novel pre-processing pipeline to address RQ1. These signals
are then used to train a DNN for “semantic spectrum segmentation", a new
approach which effectively address RQ2. During inference phase, adaptive
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bandwidth processing and anomaly detection modules are proposed to ad-
dress RQ3 and RQ4 respectively, ensuring the proposed framework is prac-
tical in real-world scenarios. We explain each component of M2RF in the
following subsections.
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Figure 3: Overview of M2RF, from I/Q data acquisition through data pre-processing,
training, and testing in real-world scenarios.

4.1. Data Pre-processing
Data collected in controlled environments often fails to generalize to com-

plex real-world spectrum conditions. However, directly collecting spectrum
data in open environments presents its own difficulties: unknown signals may
be transmitting simultaneously, creating interference that compromises algo-
rithm performance. Additionally, labeling data containing these unknown
signals is inherently challenging, as their sources and characteristics cannot
be readily identified.

To address RQ1, we introduce a novel data pre-processing pipeline that
effectively simulates comprehensive spectrum conditions through controlled
data collection. This pipeline comprises two components: controlled data
collection to establish a comprehensive signal repository, and a data aug-
mentation process that simulates real-world scenarios using signals from the
controlled environment. Note that this pipeline is only applied during the
training phase. During inference, the fingerprinting algorithm operates di-
rectly on real-world spectrum data.

4.1.1. Signal Repository
We first build a curated collection of individual, high-quality radio signals

captured under controlled conditions. These signals are recorded sequentially,
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ensuring that only one transmission occurs at a time, with known center fre-
quencies fc and bandwidths B. This controlled environment ensures that
each signal is free from external interference or overlapping transmissions,
capturing the characteristics necessary for subsequent processing and accu-
rate radio fingerprinting. Once collected, each radio signal s(t) undergoes
the following procedure:
1 Segmentation: The continuous time-domain signal s(t) is segmented
into smaller, fixed-length portions to capture individual signal instances. We
divide the continuous recording into segments of duration T , which corre-
sponds to a fixed number of I/Q samples, to isolate relevant transmissions.
The segmentation process can be represented as:

sseg[n] = s[n] · w[n], (1)

where w[n] is a rectangular windowing function defined in discrete time as:

w[n] =

{
1 for 0 ≤ n < N

0 otherwise
, (2)

where N is the fixed number of I/Q samples in each segment and sseg[n]
represents the n-th sample of the segmented signal. The segmented signal
sseg[n] contains a fixed duration of the transmission, ready for frequency
domain processing.
2 Fast Fourier Transform (FFT): The segmented time-domain signal
sseg[n] is then converted to the frequency domain using the Fast Fourier
Transform (FFT). This transformation yields the frequency spectrum Sfft(f),
which represents the signal’s frequency components:

Sfft(f) = FFT{sseg[n]}. (3)

3 Pruning of Unwanted Frequency Components: To focus on the
signal band of interest and eliminate out-of-band noise, we apply frequency
pruning. This step retains only the frequency components within the band-
width B around the center frequency fc, effectively isolating the relevant
spectral portion for radio fingerprinting. The pruned signal Spruned(f) is
obtained by applying a binary mask in the frequency domain:

Spruned(f) = Sfft(f) ·M(f), (4)
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where M(f) is a frequency mask defined as:

M(f) =

{
1 for fc − B

2
≤ f ≤ fc +

B
2

0 otherwise
. (5)

4 Storage in Signals Repository: The pruned frequency-domain I/Q
samples Spruned(f) are then stored in the signals repository. This repository
serves as a comprehensive and clean dataset of individual radio fingerprints in
the frequency domain. It is designed for subsequent use in analysis, scenario
simulation, and training of the fingerprinting model, ensuring the necessary
data quality for accurate device identification. The pre-processing pipeline,
based on our implemented steps, can be summarized as the transformation:

s(t) → sseg[n] → Sfft(f) → Spruned(f) → sigrepo.

4.1.2. Simulation of Scenarios
Scenario generation is a crucial step that simulates a wide variety of

real-world environments. By integrating multiple signals into a "stitched"
wideband signal, this approach reduces the need for extensive real-world
data collection.

Figure 4: Visual representation of scenarios: (Top) Scenario 1 with non-overlapping
signals, (Middle) Scenario 2 with randomly positioned signals, and (Bottom) Sce-
nario 3 showcasing partial or full overlapping signals, all within a 50 MHz band-
width.

By using such stitching procedure made with individual signal widths,
our pipeline dynamically generates numerous training samples that can work

13



with different signal bandwidths. Figure 4 shows an example of scenario
generation with 50 MHz observable bandwidth and 20 MHz wide signals.
The scenarios are generated with a procedure described in Algorithm 1, which
assembles signals into a complete training sample via ’spectrum stitching’.

Algorithm 1 Sample generation using spectrum stitching.
Require: sigrepo, buf, B, signalbw, niq, maxsignals, probempty, probcentered
1: Decide if the bandwidth is empty based on probempty
2: if bandwidth is not empty then
3: Select randomly nsignals from 1 to maxsignals
4: Randomly choose transmitters from sigrepo
5: for each card signal do
6: Extract corresponding signal from sigrepo
7: Determine center frequency fcenter
8: if Scenario 1 then
9: Sequential placement in buffer

10: else if Scenario 2 then
11: Random placement without overlap
12: else if Scenario 3 then
13: Allow overlaps
14: end if
15: Update labelmatrix and buf
16: end for
17: end if
18: Add background noise from sigrepo
19: Stitch signals and noise to finalize inputsamp
20: return inputsamp and labelmatrix

The algorithm first determines if the observable bandwidth will be empty,
based on the probability probempty. If not empty, it selects a number nsignals

between 1 and maxsignals of signals from the repository sigrepo. Placement
within the bandwidth is guided by a center frequency fcenter, chosen ran-
domly based on the parameter probcentered, which controls whether signals
are centered or distributed. The final algorithm step adds background noise
sourced from the signals repository to the stitched signal to simulate realistic
conditions. The resulting sample is then stored with its label matrix. The
resolution of scenarios, defined by the frequency sub-band size into which the
observable bandwidth is divided, is given by: resolution (R) = B

niq
. This res-

olution sets the granularity for analyzing and classifying the signal spectrum.
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The label matrix, structured as C × niq (where C is the number of classes),
enables fine-grained classification across the bandwidth.

4.2. Spectrum Fingerprinting
As discussed in Section 2, conventional fingerprinting algorithms that

classify one device at a time cannot scale to multi-device authentication.
To address RQ2, we propose an approach based on semantic segmentation.
This approach directly takes wideband RF data as input and labels each I/Q
waveform in the frequency domain, enabling simultaneous localization and
detection of multiple devices across the spectrum. The following subsections
outline the multi-label semantic segmentation methodology, the structure of
the DNN model, its adaptability to varying input sizes, generalization strate-
gies, and the scalable processing techniques we implemented. Additionally,
we provide a detailed discussion of the specific adversarial detection technique
used in this approach. A detailed explanation of the various loss functions is
provided in Appendix A.

4.2.1. Multi-Label Signal Segmentation
Our approach utilizes semantic segmentation, a technique originally de-

veloped for computer vision tasks. The key idea is to segment objects from
the background by labeling each pixel belonging to those objects based on
their semantic information within the frame. Similarly, we apply this idea
to spectrum sharing tasks, identifying target signals within noisy spectrum
environments.

Specifically, we transform the captured waveform into the frequency do-
main and divide it into multiple sub-channels. A DL-based semantic seg-
mentation algorithm is then applied to detect signals across the bandwidth.
Similar to image-based semantic segmentation, our signal segmentation ap-
proach labels each sub-channel based on waveform-level features. This en-
ables the simultaneous detection and classification of multiple overlapping
signals within the bandwidth.

One significant difference between the image segmentation and signal seg-
mentation is the multi-label nature of the radio environment. In an image,
the object in the behind will be blocked by the object in the front by its non-
transparent nature. In contrast, different signals can coexist within the same
frequency band without occluding each other in the radio environment. As a
result, each frequency bin can be assigned to multiple classes simultaneously.
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Therefore, we extend the semantic segmentation algorithm to output a bi-
nary segmentation map for each class, where each map indicates the presence
or absence of the corresponding class within the given frequency bin. The
final segmentation output is a matrix where each row corresponds to a class
and each column corresponds to a frequency bin.

4.2.2. DNN Model Architecture
Our backbone is inspired from U-Net, which was initially proposed for

biomedical image segmentation [30]. We adapted this architecture for radio
fingerprinting by replacing the 2D convolutional layers with 1D convolutions
to process I/Q samples effectively. As illustrated in Figure 5, the architecture
comprises five encoding and five decoding blocks. The encoding path system-
atically downsamples the input data, capturing features at varying levels of
abstraction through 1D convolutional layers, batch normalization, and ReLU
activations. Max pooling layers are employed within each encoding block to
reduce the spatial dimensions.

+

+

+

+

Figure 5: Adapted U-Net architecture for radio fingerprinting. The left side shows
the encoding path for feature abstraction, the middle includes the bottleneck and
non-local block for long-range dependencies, and the right side represents the de-
coding path.

The decoding path mirrors the encoding process, progressively recon-
structing the data to its original size using upsampling layers. Skip con-
nections between corresponding encoding and decoding blocks ensure that

16



spatial information, crucial for accurately identifying device-specific charac-
teristics in radio signals, is preserved throughout the DNN. The final layer
applies a 1x1 convolution to produce a multi-channel output, resulting in a
C × niq matrix, where each channel corresponds to a different class in the
multi-label segmentation task.

4.2.3. Integration of Non-local Block
One issue of U-Net is that its architecture is fully comprised of convolu-

tional neural networks (CNNs). However, conventional CNNs often struggle
with capturing long-range dependencies [31], especially in radio applications
where signals are wide-spread to large bandwidth in the spectrum. As such,
conventional U-Net may misclassify a portion of sub-channels as the output
is based on a group of neighboring features in sub-channels without con-
sidering the dependencies across frequency. As such, a non-local block is
incorporated into the last layer to enhance the performance. The non-local
block addresses this by introducing a self-attention mechanism that allows
the network to consider the global context of the feature maps. The self-
attention is defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V, (6)

where Q, K, and V represent the Queries, Keys, and Values, respectively,
derived from the feature maps using 1x1 convolutions. Here, d is the embed-
ding dimension. This operation computes a weighted sum of the entire fea-
ture map, effectively enabling the model to capture long-range dependencies.
The integration of the non-local block ensures that the DNN can accurately
classify RF signals, even in scenarios where signals overlap or interfere with
each other.

During training, we estimate the noise floor across the training dataset by
recording the minimum values of the smoothed signal power in the frequency
domain. This noise estimate is then used to normalize the input signals dur-
ing inference, ensuring that the model can generalize to different noise levels
encountered in real-world deployments. The effectiveness of this approach is
enhanced by the scenario generation process discussed in Section 4.1.2, which
introduces a variety of signal placements, overlaps, and noise conditions into
the training data. This diversity ensures that the model can handle a wide
range of RF conditions without overfitting to specific scenarios.
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4.3. Adaptive Signal Bandwidth and Channel Bandwidth Processing
As discussed in RQ3, spectrum sharing often requires the system to mon-

itor a broader spectrum than their observable channel bandwidth B. Addi-
tionally, transmitted signals may dynamically adjust their signal bandwidth
W based on available spectrum resources and throughput requirements. To
address this challenge, we implement adaptive signal and channel bandwidth
processing by scanning channels and aggregating the results.

Parallel Processing
U-Net RF 

Fingerprint 
Classifier

Identification Map 
(Size = B,W)

Aggregation

Final 
Prediction

Figure 6: Adaptive wide-band and channel bandwidth processing pipeline: The
input signal covering a larger bandwidth B̃ or wider channel width W̃ is divided
into overlapping segments of size B or W , processed by the U-Net model. The
outputs are then aggregated to produce the final prediction across the full signal
or bandwidth.

Our key intuition is that hardware imperfections are intrinsic to the phys-
ical components of the device and are thus independent of the signal band-
width. Thus, when a signal with a bandwidth larger than W is received, the
M2RF divides it into smaller segments, each matching the W for which the
model was trained. Similarly, when faced with a signal that spans a larger ob-
servable bandwidth B̃ > B, M2RF divides the larger bandwidth into smaller,
partially overlapping segments, each of size B. Each segment is processed
individually by the DNN and the outputs are combined to form a final output
that covers the entire bandwidth B̃. After processing, the predictions from
these individual segments—whether divided by signal width or observable
bandwidth—are aggregated to form a cohesive understanding of the entire
wider signal W̃ or bandwidth B̃. This aggregation step ensures that even
when the signal spans a larger width or bandwidth, the model’s predictions
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are consistent and accurate, effectively identifying the unique radio finger-
print embedded within the signal. This capability highlights the scalability
and portability of our approach, making it highly versatile for deployment
across various RF environments where both signal widths and observable
bandwidths can vary significantly.

Figure 6 shows the adaptive pipeline that efficiently processes signals ex-
ceeding the standard training bandwidth. Specifically, for a input that has
larger signal bandwidth W or observable bandwidth B, the pipeline first
divide it into multiple overlapping chunks and each segment will have a in-
dividual score output by the signal segmentation model. After that, the ag-
gregation block is used to average the overlapped output of multiple chunks
while keeping the same score for non-overlapping output. This method en-
sures that our system can accurately process and analyze signals across a
wide range of bandwidths and channel widths, maintaining high precision in
radio fingerprinting.

4.4. Anomaly Detection
Beyond identifying legitimate devices, we are also interested in detecting

interference and malicious traffic in the spectrum. To address RQ4, we in-
troduce a novel anomaly detection approach by leveraging the uncertainty
in the DNN output. During training, only legitimate signals are used, which
results in confident predictions for authorized devices. Conversely, a mali-
cious signal or interference not seen during training will be less confident,
thus enabling M2RF to detect adversaries by evaluating the randomness of
the spectrum map.

To quantify adversarial activity, we apply total variation, which evaluates
the consistency of the DNN output across the frequency domain. Higher total
variation indicates a higher likelihood of a malicious signal. For a 1D vector
x, the total variation is defined as:

TV (x) =
N−1∑
i=0

|xi+1 − xi|, (7)

where xi is the i-th element in vector x while N denotes the dimension of
the input. While total variation is first introduced for denoising [32, 33],
the element-wise distance |xi+1−xi| evaluates the consistency in DL module
output in our case, making it a good metric to detect the malicious user who
constantly has a noisier output than legitimate user. For example, the total
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Figure 7: An example of DNN output for a legitimate user vs malicious user. The
inference map presents high randomness while legitimate user output has more
consistency.

variation of the legitimate user output in Figure 7 is 2 while the malicious user
output has a total variation of 12. By increasing the resolution in frequency
domain (e.g., in our experiment we use 4096 as the input and output size),
the difference of total variation between legitimate and malicious users will
increase significantly.

By comparing the TV values for legitimate and malicious signals, we set
a detection threshold λm:

TV (x)
H1

≷
H0

λm, (8)

where H0 denotes the hypothesis that signal x is not an adversary and H1

denotes the alternative hypothesis that x is considered as adversary.

5. Experimental Setup

Our data collection setup captures radio fingerprints under two distinct
scenarios—wireless and wired—using sophisticated hardware to ensure ac-
curacy and reliability. As shown in Figure 8, the configuration includes a
Multiple-Input Multiple-Output (MIMO) system for the simultaneous trans-
mission of 15 PCI-E wireless LAN cards, all identical in model and version
(802.11ac/ax). This choice of identical devices creates a challenging test sce-
nario, generating highly correlated signals to rigorously test M2RF’s ability to
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distinguish between identical transmitters. The ASUS RT-AX86U router is
used as the primary receiver, and I/Q data is captured via an USRP X310
and USRP B200mini, each equipped with VERT2450 and L-com antennas.

Wireless-WiFi

Wired-WiFi

Measurement 
Setup

RX_Router
TX_PCI-E

RX_USRP

RX_Router RF_Splitter

TX_PCI-E

RX_USRP

MIMO System PCI-E Cards

Router

ASUS RT-AX86U

AntennasRadios

L-com
VERT2450

USRP X310

USRP B200mini

Figure 8: Overview of the data collection testbeds; (Top Left): MIMO system with
PCI-E cards for simultaneous transmission; (Top Right): Individual PCI-E cards;
(Bottom Left): Radios, antennas, and router setup; (Right): Measurement setup
for wireless and wired data collection.

We created two testbeds to evaluate radio fingerprinting performance un-
der both wireless and wired data collection methods. The wireless setup,
where radio transmissions from the PCI-E cards are captured by the USRP
radios through antennas, simulates a realistic, uncontrolled environment, typ-
ical of actual deployments. This setup provides insight into radio fingerprint
behavior in dynamic conditions affected by interference, multi-path effects,
and environmental variability. Conversely, the wired setup provides a con-
trolled baseline with a higher signal-to-noise ratio (SNR) of around 20-25
dB, compared to 15-20 dB in the wireless setup. This comparison highlights
the robustness of our radio fingerprinting approach across varying SNR levels
and operating conditions.

Data were collected over three days within a laboratory setting to capture
a wide range of signal conditions. This approach accounted for environmental
factors like temperature fluctuations and electromagnetic interference. Data
was collected across two specific frequency bands – 5.5 GHz (channel 100) and
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5.6 GHz (channel 120) – within a 50 MHz observable bandwidth, with each
Wi-Fi card transmission occupying a 20 MHz bandwidth. To prevent signal
overlap and ensure distinct RF fingerprints, each PCI-E card’s transmission
was captured separately, achieving the precision necessary to differentiate
between devices with nearly identical hardware profiles.

5.1. Hardware Characteristics
DNN training was conducted on a system featuring 4 NVIDIA A100 80GB

PCIe GPUs, 512 GB RAM, and dual Intel Xeon Silver 4410Y processors,
ensuring efficient processing for large-scale DNN tasks. After training, the
DNNs were run on the Jetson Orin Nano module, powered by a 6-core ARM
Cortex-A78AE 64-bit CPU. The system is equipped with 8 GB of 128-bit
LPDDR5 memory and a 1024-core NVIDIA Ampere architecture GPU with
32 Tensor Cores, capable of delivering up to 40 TOPS.

5.2. Experimental Dataset and Training
Experiments were conducted in both wireless and wired modes, primar-

ily focusing on signals within a 50 MHz bandwidth. The primary dataset
includes signals from 15 authorized devices, comprised 1.25 million samples,
with 80% allocated for training and 20% for testing across three distinct
scenarios: non-overlapping, overlapping, and partially observed signals. For
training, we used the Adam optimizer with a StepLR learning rate scheduler,
starting at 0.001 and reducing by a factor of 0.1 every 30 epochs. The DNN
was trained for 100 epochs with a batch size of 1024, with early stopping
applied after 30 epochs of no improvement to prevent overfitting.

To rigorously test the M2RF resilience against potential attacks, we pre-
pared additional testing datasets for specific attack scenarios:
• Adversary: For informed adversary, we collected Wi-Fi data from unau-
thorized devices identical in hardware to the authorized devices but excluded
these samples from training. For uninformed adversary, we collected data us-
ing Wi-Fi protocol but from devices having different hardware characteristics
than those used during training;
• Interference: We collected data with devices using Bluetooth Low Energy
(BLE) with bandwidth 1 MHz, Long Term Evolution (LTE) with bandwidth
10 MHz, Zigbee with bandwidth 2 MHz as interference, as well as with
additional Wi-Fi devices in the 2.4 GHz band.
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6. Performance Evaluation

6.1. Performance Across Input Sizes and Scenarios
6.1.1. Wireless Mode

We started with wireless data, and compared F1-score for different input
sizes (1024, 2048, 4096) between the three scenarios defined in Figure 4 to
analyze how well M2RF performs. As depicted in Figure 9, the F1-scores
for all scenarios significantly improve as we increase the input size. For
scenario 1, the F1 score approaches as high as 86.65% with 1024 input size
but increases nearly perfectly to a value of 94.99% to even an input size
of 4096, showing that the trained model without overlap predicts very well
between each signal class. In scenario 2, a similar trend is observed, where
F1-scores increases from 82.11% at 1024 to reach the value of around 90.45%
at 4096. The significant improvement is in scenario 3, where the F1-score
improves from 69.71% at 1024 to 77.06% at 4096, demonstrating the M2RF
robustness against overlapping signals. On the other hand, larger input sizes
imply higher processing latency.
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Figure 9: F1-score comparison for various input sizes across scenarios using wireless
data.

Similarly, the IoU metric is a good indicator for segmentation accuracy.
As expected, the IoU reaches 90.54% for an input size of 4096 in scenario 1,
while scenario 2 slightly drops to 82.75%, due to the complexity introduced
with random signal placements. In scenario 3 IoU decreases to 63.39% as
signals now overlap and become harder to localize within the spectrum cor-
rectly. However, these results highlight the adaptability and robustness of
the M2RF in varying RF environments. Detailed metrics for each input size
across scenarios are provided in Appendix B.
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6.1.2. Wired Mode
We further evaluate the robustness of M2RF in a wired setup, using the

same input size of 4096 to ensure consistency with the wireless mode. Fig-
ure 10 shows that the wired setup achieved notably higher scores, which is
expected given the absence of interference.
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Figure 10: IoU and F1-score for different scenarios with an input size of 4096 using
wired data.

In scenario 1 where the signals do not overlap, M2RF obtained a IoU of
99.12% and an F1-score of 99.56%, implying almost no misclassification. This
shows the ability of M2RF to identify independent, non-overlapping signal
sources. In a moderately challenging conditions (scenario 2) with partially
observed signals, we obtain an IoU of 92.29% and F1-score of 95.95%, demon-
strating the resilience of M2RF. The wired setup resulted in 69.66% IoU and
81.6% F1-score, even under scenario 3 – the worst-case conditions with both
fully and partially overlapping signals.

6.1.3. Confusion Matrices Analysis
Deeper insights into the M2RF’s classification accuracy were gained by

analyzing the confusion matrices for each scenario, using wireless data with
an input size of 4096. These matrices offer a detailed breakdown of true
and false identifications across all 15 devices. Further analysis of confusion
matrices for the wired mode is provided in Appendix C.

In scenario 1 (Figure 11a), the confusion matrix of non-overlapping signals
provides that M2RF achieves a high classification accuracy, and most devices
get an accuracy greater than 90%. For instance, card 1 achieves 94.1%, and
card 2 reaches 97.2%, reflecting the system’s effectiveness in distinguishing
devices when signals are isolated and clearly separated.
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(a) Scenario 1.
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(b) Scenario 2.
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(c) Scenario 3.

Figure 11: Confusion matrices for three scenarios in wireless mode.

Scenario 2, shown in Figure 11b, introduces an increased level of complex-
ity with randomly placed signals within the bandwidth. This setup represents
a more realistic real-world scenario, where signals can be partially or fully
present into the observable bandwidth, generating signal glitches on duration
and shifting. Although M2RF achieves high performance for multiple devices
(e.g., card 2 at 94.8%) there is a small drop in accuracy for others, such as
card 3 (85.2%). The variation in this performance illustrates the M2RF’s ro-
bustness to non-ideal conditions where the signals are not perfectly isolated,
thus making the classification problem harder and M2RF learning to generalize
across unpredictable scenarios.

Scenario 3 is shown in Figure 11c which is full or partial overlapping of
signals. At this point, accuracy rates further decrease, where card 1 gets only
68.1% and card 3 gets only 65.9%. Such a decrease is intuitive as if the signals
overlap in the same frequency range, finding the characteristics of signal
would be difficult. These obstacles notwithstanding, the M2RF still performs
well in accurately classifying most devices and shows it could operate in
congested RF environments where overlaps are frequently observed.

The distinguishing of devices in scenario 3 by the M2RF also suggests its
ability to test against jamming attack and even detect it. In those cases, we
may actually have intentional disruptions within the spectrum represented
by overlapping signals. The M2RF’s strong localization of these overlapping
signals would enable the development of a target countermeasure where the
M2RF can detect and suppress jamming in real-time with minimal impact to
other neighboring communications. This capability adds a critical dimension
to the M2RF ’s utility in dynamic, interference-prone environments, where
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prompt and accurate signal identification is essential for maintaining security
and integrity.

6.2. Scalability and Generalization
In this section, we examine the scalability and generalizability of M2RF

across different bandwidths and channel widths. The DNN was initially
trained with a 50 MHz bandwidth and 20 MHz-wide signals and then tested
under varying bandwidths to assess whether the hardware imperfections it
leverages remain consistent. These evaluations provide insights into M2RF’s
adaptability to changing spectral conditions. Key cases are illustrated in
Figures 12 and 13, using data collected on a different day with unseen signal
conditions, which typically vary due to environmental factors.
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Figure 12: 100 MHz bandwidth, 4 signals 20 MHz wide. (Left) Ground Truth,
(Right) Model Prediction.

In the first test, the M2RF system was evaluated with a 100 MHz band-
width containing four devices, each occupying 20 MHz. As shown in Figure
12, M2RF successfully distinguishes between these signals, achieving an F1-
score of 90.22% and an IoU of 82.32%. Although performance shows a slight
reduction from the 50 MHz baseline, this decrease can be attributed to the
increased spectral complexity and channel noise. Nonetheless, M2RF demon-
strates high scalability, maintaining effective detection and localization of
multiple signals within the broader bandwidth without requiring retraining.

In a second test, M2RF was evaluated with two signals that were 40 MHz
wide in a 100 MHz bandwidth. M2RF achieved F1-score of 87% and an IoU of
77.29%. The broader signal, along with its associated noise, added complex-
ity to this configuration. Although the accuracy drops a little, M2RF correctly
identifies and localizes every signal, as shown in Figure 13. The above result
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illustrates the robustness of M2RF to changes in channel width and signal
structure. Most importantly, the system performed a correct classification
without retraining, making our M2RF approach even more robust.
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Figure 13: 100 MHz Bandwidth, 2 signals 40 MHz wide. (Left) Ground Truth,
(Right) Model Prediction.

This establishes that, although we see some degradation in performance
at higher bandwidth demand cases, the fundamental approach remains re-
silient. The signal-recognition capabilities of the M2RF, including its scala-
bility and robustness to changing channel width and signal overlap, rely on
hardware-induced imperfections that vary consistently across devices. These
frequency-specific distortions as a result of hardware imperfection persist
across different bandwidths allowing for reliable classification and conse-
quently localization of the signal, yielding a robust fingerprinting approach
that can work well with both diverse and dynamic RF environments. Such
scalability and flexibility is essential for practical applications where spectral
conditions will change, and the system has to function properly across a wide
range of bandwidths and interference levels.

6.3. System Defense under Malicious Activity
We rigorously evaluated M2RF’s defense capabilities against both informed

and uninformed adversaries within Wi-Fi networks, as well as interference
from other wireless technologies in congested spectrum environments.

In the informed adversary scenario, the attacker has full knowledge of
the authentication method and ML model used, as well as access to identical
hardware as the legitimate devices. On the other hand, the uninformed
adversary represents a more realistic scenario in which the attacker uses
potentially different hardware versions unknown to the system at training
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time. To evaluate the robustness of M2RF in crowded spectrum environments,
we also performed inference detection with respect to signals from other
non-Wi-Fi technologies like BLE, LTE and Zigbee. This multi-technology
challenge tests the capability of M2RF to detect unauthorized transmissions
in various signal types, reflecting real-world conditions in densely populated
RF environments.

Table 1: M2RF Performance under Attacks in Wi-Fi Networks.

Attack Type User P (%) R (%) F1 (%) MR (%) FAR (%)

Uninformed Authorized 98.29 87.66 92.67 12.34 1.52
Malicious 88.90 98.48 93.44 1.52 12.34

Informed Authorized 95.71 87.51 91.43 12.49 3.91
Malicious 88.51 96.09 92.14 3.91 12.49

Overall Accuracy: 92.44%

We used approximately 100 000 samples, evenly split between authorized
and malicious transmissions, to evaluate system performance for each attack
type. As shown in Table 1, M2RF consistently performed well in distinguish-
ing authorized from malicious signals using a TV-based threshold of TV = 8.
In uninformed attack scenario, the system reached an F1-score of 92.67% for
authorized devices and 93.44% for malicious devices, with a mean Miss Rate
(MR) of 2.72% across both attack types, demonstrating reliable detection
of unauthorized signals even when attackers use different hardware. For in-
formed attack, where the attacker’s hardware matches that of the authorized
devices, M2RF maintained a high F1-score of 91.43% for authorized devices
and 92.14% for malicious devices, showing robustness against highly sophis-
ticated adversaries, without requiring retraining on specific attack data.

Table 2: M2RF Performance under Interference from Other Technologies.

User P (%) R (%) F1 (%) MR (%) FAR (%)

Authorized 78.23 87.47 82.59 12.53 24.45
Interference 85.72 75.55 80.31 24.45 12.53

Overall Accuracy: 81.52%

Table 2 highlights M2RF ’s ability to differentiate authorized Wi-Fi sig-
nals from non-Wi-Fi signals in a multi-technology setting, achieving an over-
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all accuracy of 81.52%. This multi-technology evaluation confirms M2RF’s
adaptability in congested spectrum environments, such as the 2.4 GHz band,
effectively distinguishing authorized Wi-Fi devices from other signals without
requiring retraining on these technologies. Using unique radio fingerprints,
M2RF maintains high performance under various RF conditions, demonstrat-
ing its ability to secure spectrum management and defense against unautho-
rized access in high-traffic, multi-technology scenarios.

6.4. Energy-Latency Trade-off for Different Input Sizes on an Edge Device
In our experiments on energy-latency trade-offs, we measured the per-

formance of different input sizes—1024, 2048, and 4096—on both GPU and
CPU through Jetson Orin Nano device. The primary metrics were mean in-
ference time (MIT) and mean energy consumption (MEC), which are crucial
for evaluating real-time M2RF efficiency. Despite the CPU having lower mean
power consumption (MPC) per millisecond (ms), the significantly longer MIT
leads to much higher total energy consumption compared to the GPU. For
example, at an input size of 4096, the inference time on the GPU was 20.87
ms compared to 391.62 ms on the CPU, demonstrating the GPU’s substantial
speed advantage for time-critical applications.
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Figure 14: Energy-latency trade-off for different input sizes.

MEC was calculated using the formula:

MEC (mJ) = MIT (ms) × MPC (mW). (9)

This formula highlights that, although the CPU consumes less power at 8.63
milliwatts (mW) for an input size of 4096, its much longer inference time
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results in a significantly higher energy consumption of 3381.50 millijoules
(mJ), compared to the GPU’s energy consumption of 257.95 mJ for the
same input size. Thus, the GPU’s slightly higher power draw (12.36 mW)
is more than offset by its superior processing speed, making it far more
energy-efficient in total energy use. Figure 14 further illustrates this trade-
off, showing how both MEC and MIT increase with input size, but at a much
steeper rate for the CPU than for the GPU.

7. Related Work

Spectrum Sensing. Early spectrum sensing research focused on binary
classification to detect whether the frequency band is in use or not [34, 35].
These approaches fall short of supporting sophisticated spectrum policies
where devices may require different levels of priority in spectrum access.
Recent work proposed to jointly classify multiple signals in the spectrum
based on wireless technologies [24] and modulation types [27]. However,
[24, 27] fail to provide finer-grained identification of devices.
Radio Fingerprinting. Initial fingerprinting approaches, based on hand-
crafted features such as phase and amplitude noise to characterize device
fingerprints, performed well in controlled environments but suffered from
overfitting issues in more complex settings [36, 25, 26]. CNNs and RNNs
solve this issue by performing feature extraction over raw I/Q data automat-
ically [37, 38]. However, existing radio fingerprinting methods has a series
of limitations making them unpractical in spectrum sharing scenarios. For
example, the authors [21] had over 95% accuracy with 16 devices but clas-
sified only one signal at time while it was assumed the center frequencies
were known. In contrast, our method based on U-Net dynamically clas-
sifies transmissions with different, even overlapping center frequencies and
brings spectrum localization by segmenting in frequency bins. In addition,
traditional models often struggle to generalize effectively between controlled
and real-world environments, leading to frequent model failure and the need
for retraining [39, 40]. In contrast, our work demonstrates scalability and
generalization capability in different scenarios without retraining.

8. Conclusions

This paper demonstrates that radio fingerprinting in multi-device, multi-
band environments requires effective management of overlapping signals, di-
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verse bandwidths, and inherent hardware imperfections. We present a U-Net-
based model for scalable and robust semantic segmentation of RF signals to
tackle these challenges. We obtain the following results: (i) the combined
loss function significantly enhances performance, achieving an IoU of 90.54%
and an F1-score of up to 94.99% for non-overlapping signals, and an F1-
score of up to 77.06% in overlapping scenario; (ii) the approach maintains
reliable detection across varied bandwidths, achieving an F1-score of 90.22%
in scenarios with a 100 MHz bandwidth; (iii) the system effectively detects
malicious Wi-Fi activities with an overall accuracy of 92.44% and a mean
MR of 2.72%, without prior exposure to attack data, and successfully dif-
ferentiates authorized Wi-Fi devices from non-Wi-Fi technologies with an
accuracy of 81.52%, even in congested spectrum environments; and (iv) our
system achieves an mean inference time of 20.87 ms and a mean energy con-
sumption of 257.95 mJ on edge device. These results confirm that the M2RF
has the potential to provide an efficient, scalable solution for IoT security
applications with real-time constraints.
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Appendix A. Loss Functions and Optimization

We have investigated a number of loss functions. Here, the loss functions
are part of local-level and region-level metrics. Local-level loss measures
accuracy at each frequency bin within the raw I/Q data, capturing fine-
grained variations essential for distinguishing signal characteristics. Region-
level loss, on the other hand, considers larger segments within the data,
promoting consistency across continuous sections and enhancing detection of
broader patterns, such as distinct signal regions or transmission boundaries.
We summarize them as follows:
Dice Loss (DiL): DiL [41] is a region-based metric used to assess the simi-
larity between predicted labels and ground truth, which is derived from the
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Dice coefficient, a widely used measure of similarity. It is defined as:

DiL = 1− 2×
∑n

i=1 yi × ŷi∑n
i=1 yi +

∑n
i=1 ŷi + ϵ

, (A.1)

where yi and ŷi are the ground truth and predicted values, respectively, and ϵ
is a small constant to avoid division by zero. DiL focuses on maximizing the
overlap between the predicted and ground truth masks, making it suitable
for tasks where precise segmentation is critical.
Intersection over Union Loss (IoUL): The IoUL [42] is another region-
based loss function that measures the overlap between the predicted and
ground truth. It is defined as:

IoUL = 1−
∑n

i=1 yi × ŷi∑n
i=1 yi +

∑n
i=1 ŷi −

∑n
i=1 yi × ŷi + ϵ

. (A.2)

This loss is particularly useful in cases where there is significant class imbal-
ance, as it penalizes both false positives and false negatives.
Cross-Entropy Loss (CEL): The CEL [43] is a loss function for classifi-
cation tasks and is defined as

CEL = −
n∑

i=1

yi log(ŷi). (A.3)

This loss provides a local-level accuracy of semantic segmentation which is
used as a baseline in our experiments and is combined with other loss func-
tions to improve the model performance.
Binary Cross-Entropy Loss (BCEL): BCE [44] is widely used for binary
classification tasks and is similar to CEL but adapted for binary output. It
is defined as:

BCE = −
n∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi). (A.4)

BCE is effective for multi-label segmentation tasks where each frequency bin
can belong to more than one class, making it particularly relevant for radio
fingerprinting scenarios with overlapping signals.
Focal Loss (FL): FL [45] is designed to address the issue of class imbalance
by down-weighting the contribution of easy examples during training and
focusing on hard-to-classify examples. It is defined as:

FL = −α(1− ŷi)
γ log(ŷi), (A.5)
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where α is a balancing factor and γ is the focusing parameter. FL is particu-
larly effective in improving the performance of the DNN on underrepresented
classes.
Combined Loss (CL): To leverage the strengths of different loss func-
tions, we have implemented a CL function that integrates both local-level
and region-level losses, defined as:

CL = β × CEL + (1− β)× IoUL, (A.6)

where β is a weighting factor that balances the contribution of each compo-
nent. As such, we can optimize both fine-grained accuracy and overall region
consistency.
Evaluation of Loss Functions. We discuss a comparative analysis of vari-
ous loss functions applied to the radio fingerprinting task of non-overlapping
signals. Table A.3 shows that the CL function achieves the highest perfor-
mance across all metrics, with an Intersection over Union (IoU) of 77.37%.
This highlights the effectiveness of combining local-level and region-level loss
functions.

Table A.3: Performance Metrics for Different Loss Functions in Scenario 1 with an
Input Size of 1024.

Loss Function IoU (%) Precision (%) Recall (%) F1-Score (%)

BCEL 77.08 86.48 86.50 86.49
CEL 77.04 86.44 86.43 86.43
CL 77.37 86.66 86.65 86.65
DiL 60.34 83.13 69.75 75.85
FL 76.07 85.79 85.74 85.76
IoUL 59.84 83.11 68.81 75.29

DiL and IoUL show significantly lower IoU values (around 60%). While
FL performed better than DiL and IoUL, it does not perform as BCEL, CEL
and especially CL. As such, we chose CL for our next experiments.

Appendix B. Detailed Metrics for Each Modality

In Table B.4, we analyze the performance of M2RF in detail over various
input sizes (1024, 2048, and 4096) with respect to the wireless mode for three
different scenarios. We quantify the aspect of device-specific characterization
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from each input size, especially in a wireless scenario, when signals are likely
to be received and disturbed due to environmental interference. The con-
stant high performance of the 4096 input size shows its appropriateness as
a benchmark. Table B.5 presents the corresponding results in wired mode,
where the improved signal quality and reduced interference further enhance
performance, establishing an “ideal” scenario for comparison.

Table B.4: Metrics for Different Input Sizes and Scenarios in Wireless Mode.

Input Size Scenario Precision (%) Recall (%) F1-Score (%) IoU (%)

1024
1 86.66 86.65 86.65 77.37
2 82.21 82.06 82.11 70.68
3 76.28 64.35 69.71 54.99

2048
1 90.86 90.83 90.84 83.50
2 86.24 86.10 86.16 76.12
3 80.87 68.09 73.81 59.45

4096
1 95.02 94.97 94.99 90.54
2 90.52 90.39 90.45 82.75
3 84.56 70.97 77.06 63.39

Input Size 1024: When an input has a size of 1024, the metrics show that
while the M2RF captures features at the device level, it does not perform as
well with the lower IoU values, as in scenario 3, where it only achieves an
IoU of 54.99%. The small input size limits the signal information that can
be used for model processing. This hinders the handling of more complicated
signal scenarios with heavy interference or overlaps. Precision, recall, and F1-
scores also decrease across scenarios. For example, the F1-score is 86.65% in
scenario 1 compared to a much lower F1-score of 69.71% in scenario 3. The
aforementioned limitations, however, imply that an input size of 1024 is poor
for robust radio fingerprinting within dynamic wireless environments.
Input Size 2048: Increasing the input size to 2048 gives significant im-
provements on all metrics. In scenario 1, the F1-score is raised to 90.84%,
and IoU increases to 83.50%, which demonstrates that it can tell apart de-
vice characteristics more easily with a bigger data sample through M2RF. On
the other hand, in scenario 3, where signals frequently overlap, we observe
that the IoU and F1-score are still low at 59.45% and 73.81%, respectively.
Though we set the M2RF to this input size of 2048 to capture finer intricacies
within the signal, it is clear from our results that larger values will be needed
in order to obtain strong accuracy under complicated wireless conditions.
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Input Size 4096: The M2RF obtains its best performance in terms of all
the metrics when having an input size of 4096. Scenario 1 achieves a pre-
cision of 95.02% (F1-score of 94.99%, IoU of 90.54%), which suggests that
the M2RF is capable of leveraging the broader input size to identify device-
specific hardware imperfections in the RF signals. In scenario 3, where it is
logical to believe the overlapping signals will challenge the model, we still
achieve an F1-score of 77.06% and an IoU of 63.39%, which is a far better
performance than using any smaller input size. This means that an input
size of 4096 is better for accounting for full radio fingerprinting details, even
under wireless mode scenarios in which signal interference occurs and where
the transmissions can be more accurately localized within the spectrum.

Based on these results, we set 4096 as our input size baseline which strikes
a balance between accuracy and generalizability for radio fingerprinting prob-
lems in wireless and wired mode.

Table B.5: Metrics for 4096 Input Size and Scenarios in Wired Mode.

Scenario Precision (%) Recall (%) F1-Score (%) IoU (%)

1 99.56 99.55 99.56 99.12
2 96.01 95.90 95.95 92.29
3 89.41 75.24 81.60 69.66

Benchmark Results in Wired Mode: As we can see in Table B.5, these
metrics also indicate that a wired mode with an input size of 4096 performs
better. In scenario 1, the precision, recall, and F1-score were all greater than
99%, with an IoU value of 99.12%, suggesting almost perfect identification
accuracy. In scenario 2, the F1-score and IoU are both high (95.95% and
92.29%, respectively), which shows that even in optimal conditions, the M2RF
accommodates a small portion of signal belonging to a structure within its
part of the observable spectrum. When things get difficult in scenario 3 with
overlapping signals, the M2RF achieves an F1-score of 81.60% and an IoU of
69.66%, also higher than the its wireless counterpart. The effectiveness of
the radio fingerprinting under better channel conditions with sufficient SNR
margin and less interference is reflected in this result, suggesting that 4096
input size is preferable for high-accuracy device authentication.

In general, the comparison of wireless and wired modes justifies the choice
of an input size of 4096 for radio fingerprinting purposes. Although perfor-
mance in the wireless mode depends on signal complexity, the results for the
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(a) Scenario 1.
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(b) Scenario 2.
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(c) Scenario 3.

Figure C.15: Confusion matrices for three scenarios in wired mode.

wired mode provide a consistent baseline, validating that this input size is ca-
pable of capturing intricate device-specific imperfections even under difficult
conditions.

Appendix C. Additional Results for Wired Mode

This part provides an overview of the performance for three scenarios of
wired mode under an input size of 4096. This wired connection means that
the signals are much cleaner and less susceptible to interference, enabling
M2RF to attain higher accuracy. The confusion matrix for each of the scenarios
demonstrates how well the system performs under various signal conditions.
Scenario 1: Non-overlapping Signals. In the first wired scenario, we have
excellent performance, also seen in the confusion matrix in Figure C.15a, as
all card IDs provide accuracy values above 99%. Specifically, card 1 gives us
an accuracy of 99.5%, card 3 provides 99.6%, and card 5 reaches 99.8%. Since
the signals are non-overlapping in this use case, it is easy for the model to
identify each device separately. This scenario underscores the effectiveness of
radio fingerprinting under ideal conditions where each device’s unique signal
characteristics are isolated, thereby minimizing potential misclassification.
The high performance in this case exemplifies how hardware imperfections
can be effectively leveraged for device identification in a controlled setting.
Scenario 2: Partial Observation with Random Frequency Cen-
ters. Scenario 2, illustrated in Figure C.15b, does not degrade accuracy
greatly but will degrade it bit by bit more than was the case in scenario 1
due to more complex signals. Note that, for example, cards 1 and 3, we
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can see the accuracies are 95.3% and 95.7%, but card 5 has a higher accu-
racy of 98.6%. Partial signals and random frequency centers make it more
challenging to separate device-specific features from the data. Nevertheless,
the M2RF performs reliably well, being able to contend with more compli-
cated signal patterns but still uniquely separating devices due to hardware
imperfections inherent in each. These results suggest the robustness of M2RF
to small changes in signal characteristics, a necessary trait for dynamic RF
environments where signal properties experience moderate fluctuations.
Scenario 3: Partial/Full Signals Overlapping. Figure C.15c shows the
confusion matrix generated for scenario 3, which again highlights how chal-
lenging it is when signals are fully or partially overlapping. The accuracy
is significantly lower in comparison to the previous scenarios. For instance,
cards 1 and 3 get lower accuracies of 71.1% and 74% respectively, while
good performances are attained on cards 9 through 15 with accuracies above
80%. Because several signals occupy the same or adjacent frequency bins,
it becomes challenging for the M2RF to discriminate between them and they
are more often misclassified. However, improved signal quality in the wired
mode helps mitigate some interference, enabling M2RF to maintain reasonable
performance despite the challenging conditions. In this scenario, the heavy
overlap among signals reveals the limitations of radio fingerprinting, while
also demonstrating that M2RF can still extract discriminative features even
in challenging RF environments.
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