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Abstract
In this technical report, we present a new mechanism for
channel sounding feedback inwirelessmultiple-input, multiple-
output (MIMO) networks that significantly reduces feed-
back overhead while not degrading communication perfor-
mance. Our new approach consists of using the multi-path
representation of the wireless propagation as an antenna-
and bandwidth-independent—and thus scalable—feedback
instance instead of relying on the channel frequency re-
sponse (CFR) which should be fed back for each transmit-
ter and receiver antenna pair over the entire operational
bandwidth. Previous approaches propose to compress the
CFR with heuristic or learning-based approaches for efficient
feedback. Yet, the resulting feedback does not scale with the
number of antennas in the MIMO system and the operational
bandwidth. Thanks to the sparse nature of wireless multi-
path channels, our approach provides a highly compressed
representation of the CFR. Indeed, the number of multi-path
components is less than 30 in typical indoor environments.
Moreover, we show that the overhead can be further reduced
by transmitting only the dominant multi-path components.
Our preliminary evaluation demonstrates that the proposed
multi-path parameter-based feedback allows maintaining
near-optimal performance with minimal bit error rate (BER)
degradation compared to CFR feedback, while drastically re-
ducing the feedback spectrum usage. This scalable approach
addresses the critical feedback overhead bottleneck of MIMO
wireless networks. This will enable the use of more antennas
and wider bandwidths, thus improving spectrum efficiency
and enhancing multi-user performance in next-generation
scenarios where channel resources are expected to be scarce
due to the growing number of connected users.
1 Introduction
Multiple-input, multiple-output (MIMO) technology employs
multiple antennas at both transmitter and receiver sides to
create parallel spatial channels that can carry independent
data streams simultaneously over the same time-frequency
resources [5]. By exploiting multi-path propagation rather
than mitigating it, MIMO systems achieve spatial multiplex-
ing gains that theoretically scale linearly with the minimum
number of transmit and receive antennas, dramatically in-
creasing channel capacity without requiring additional band-
width. However, realizing these gains requires accurate chan-
nel frequency response (CFR) at the transmitter to perform
crucial operations such as spatial precoding, beamforming,
and multi-user interference management.

The CFR is usually acquired at the receiver device to avoid
channel compensation issues linked with the use of channel
reciprocity properties when estimating the channel at the
transmitter. Hence, the receiver is required to feed back the
estimated CFR to the transmitter. However, the CFR should
be obtained for each transmitter–receiver antenna pair, mak-
ing the CFR feedback mechanism a fundamental bottleneck
to achieving the theoretical capacity gain of MIMO. The
challenge is further exacerbated by the frequency-selective
nature of wideband channels [1]. As bandwidth increases, the
channel exhibits greater frequency selectivity, requiring fine-
grained CFR across all subcarriers to capture the channel’s
frequency-domain variations. Each additional subcarrier in a
multi-carrier system (such as orthogonal frequency-division
multiplexing (OFDM)) requires separate channel estimates
for every antenna pair, which leads to a direct linear increase
in feedback overhead with bandwidth. When combined with
the quadratic scaling fromMIMO antenna pairs, the feedback
size exhibits cubic growth with system scale—a fundamen-
tally unsustainable trajectory that calls for alternative ap-
proaches. Indeed, the evolution ofWi-Fi and cellular network
standards reveals a clear trend toward wider bandwidths and
higher-order MIMO configurations, imposing an exponential
growth in feedback overhead [4, 13].

Precoding through 
the multi-path 
components for 
multiplexing

Wireless MIMO 
transmitter

MIMO channel

Multi-path 
decomposition

Channel estimation 
based on pilots

1

2

5

Wireless MIMO receivers

Pilots

Multi-path feedback

4

Multi-path pruning3

Figure 1. Proposed multi-path parameter-based feedback. In-
stead of transmitting the complete CFR, the MIMO receivers
extract and feed back the multi-path components. The num-
bers indicate the steps in the procedure (Steps 2 and 3 are
representing our proposed approach).

In this work, we present a novel feedback strategy that
exploits the inherent sparsity of wireless channels in the
spatial-temporal domain by using a multi-path parameter-
based feedback. By recognizing that the wireless channel,
despite appearing complex in the frequency domain across
hundreds of subcarriers and tens of antennas, is fundamen-
tally characterized by less than 30 propagation paths in the
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spatial-temporal domain, our approach achieves substan-
tial compression while preserving the essential informa-
tion required for effective precoding and beamforming. Our
approach is presented in Figure 1. Specifically, instead of
feeding back CFR coefficients for every subcarrier and an-
tenna pair, we extract and transmit only the parameters of
the dominant multi-path components, drastically reducing
feedback overhead. Our evaluation demonstrates that ob-
taining the precoding from the multi-path decomposition
does not degrade communication performance, as the domi-
nant multi-path components contain the essential channel
information required for effective beamforming and interfer-
ence management. Imperfect parameter estimation primarily
affects weak multi-path components that contribute mini-
mally to the overall precoding gain, allowing the system
to maintain near-optimal spatial multiplexing performance
despite the substantial feedback compression. This paradigm
shift from a frequency-domain to a spatio-temporal-domain
feedback representation breaks the direct coupling between
feedback overhead and system dimensionality in terms of
bandwidth and number of antennas, generating a fixed-size
feedback. Our comprehensive evaluation demonstrates that
this multi-path parameter-based approach maintains near-
optimal MIMO performance while reducing feedback over-
head by more than an order of magnitude, and enables prac-
tical deployment of next-generation MIMO-OFDM systems
that would otherwise be constrained by prohibitive feedback
overhead.

Summary of novel contributions
• We propose a new approach for channel feedback in wire-
less networks based on the multi-path decomposition of the
CFR. While the CFR should be fed back for each pair of trans-
mitter and receiver antennas and each sub-carrier, our feed-
back mechanism is antenna- and bandwidth-independent.
This allows increasing the number of antennas and widening
the bandwidth in MIMO systems without incurring in an
increased feedback size.
•We show that it is sufficient to feed back the parameters of
a limited number of multi-path components to maintain ad-
equate communication performance. Indeed, weaker multi-
path components contribute minimally to the precoding and,
in turn, their transmission can be avoided, thus further re-
ducing channel feedback overhead.
• We evaluated the proposed approach through simulations
in Sionna and experimental evaluations with commercial
devices, showing that the proposed constant-size feedback
approach effectively reduces feedback overhead while not
degrading communication performance.

2 Related Work
Channel sounding is essential to enable MIMO connectivity,
as it provides the channel information needed to precode

transmitted data and reliably decode received signals. Sound-
ing can be performed implicitly, doing the estimation at the
transmitter by exploiting channel reciprocity in Time Di-
vision Duplexing (TDD), or explicitly, where the receiver
estimates the CFR and feeds it back to the transmitter. As
implicit feedback requires accurate calibration to compen-
sate for hardware impairments, explicit feedback is usually
preferred in wireless networks. However, in the explicit feed-
back mode, the airtime/feedback overhead grows with the
number of antennas and the signal bandwidth, which finally
erodes the theoretical throughput gains of having large ar-
rays in MIMO systems [9]. To address this challenge, two
complementary directions have emerged: (i) sounding feed-
back compression, which maps the channel to a compact
representation (e.g., codebooks, sparse angle–delay mod-
els, learned encoders, or path-parametric; and (ii) sounding
rate adaptation, which reduces how often rich updates are
sent by exploiting temporal correlation and long-term sta-
tistics. Our approach follows the first direction: we replace
dense per-subcarrier CFR reports with a compact set of multi-
path parameters, tying payload to the number of dominant
paths rather than to bandwidth or subcarrier count, while re-
maining compatible with standard wireless signal precoding
strategies.

2.1 Sounding Feedback Compression
Sounding feedback compression reduces the size of the feed-
back frame by mapping the channel to a compact represen-
tation. Several deep neural network (DNN)-based methods
have been proposed [13]. A convolutional neural network
(CNN)-based autoencoder, CsiNet, compresses the estimated
CFR at the receiver and reconstructs it at the transmitter
for precoding [13]. An online learning framework lever-
ages side information already present in 802.11 to train au-
toencoders and reduce feedback overhead while preserv-
ing compatibility with existing devices [10]. DeepMux fo-
cuses on IEEE 802.11ax multi-user MIMO (MU-MIMO) and
orthogonal frequency-division multiple access (OFDMA):
the station (STA) feeds back quantized CFR on a subset
of subcarriers, and the access point (AP) reconstructs the
full CFR with a DNN, jointly optimizing resource alloca-
tion via deep learning [11]. SplitBeam adopts a split-DNN
with a bottleneck to shrink the feedback and lighten pro-
cessing at the STA [2]. Other works refine quantization and
training regimes, from dynamic bit allocation that balances
accuracy and overhead [15] to data-efficient training with
extrapolation and few-shot strategies [14]. Beyond Wi-Fi
systems, parametric feedback has been explored in cellu-
lar networks. Ju et al. [7] proposed COMPaCT, which uses
Transformer networks to compress mmWave massive MIMO
channels into geometric parameters (angles, delays, path
losses, phases), achieving over 90% feedback reduction by
exploiting delay-domain sparsity. However, this approach
targets cellular mmWave systems with different channel
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characteristics and has not been demonstrated on commer-
cial hardware. These schemes effectively reduce control bits
relative to the IEEE 802.11 baseline, but most operate directly
on dense CFR tensors or learned latent codes, which remain
largely context-agnostic and keep the payload coupled to
bandwidth, array size, and model order.

In contrast, our approach performs compression in a path-
parametric manner: we transform the estimated channel
into the spatial-temporal domain, identify a small number
of dominant multi-path components, and feed back only
per-path parameters.

2.2 Sounding Rate Adaptation
Few approaches have been proposed in the literature for
sounding rate adaptation in Wi-Fi networks. Bejerano et
al. [3] proposed MUTE, an algorithm where the AP decides
which STAs have to feed back an updated channel estimate
based on the statistics of the wireless channel. Specifically,
the AP estimates how much each new channel measurement
has degraded with respect to the previous estimates. This
provides a hint on the variability of the channel. The AP com-
putes the variance of the channel differences and triggers
the sounding for the STAs for which the channel variance
exceeds a threshold. Hence, MUTE performs opportunistic
sounding rounds during idle downlink periods to sound as
many users as possible from the set of users that need to be
sounded. The algorithm has been implemented on a WARP
software-defined radios (SDRs). A combination of real-world
data and emulation has been used for performance evalua-
tion. Ma et al. [8] proposed a dynamic sounding approach
that relies on the estimate of the throughput at the STA,
which is performed by the AP and is based on the estimation
of the successfully transmitted frames. Channel sounding is
triggered when the estimated throughput starts degrading.
The validation has been performed through a custom IEEE
802.11ac emulator using measured channel data. Finally, Su
et al. [12] developed a K-nearest neighbors model to estimate
the throughput at the AP. Specifically, the AP computes the
correlation between two subsequent channel measurements
and finds the best match in a dataset consisting of channel
correlation and the associated throughput. The authors also
introduced an algorithm to jointly optimize the sounding
period, the number of spatial streams assigned to each user,
and the client grouping. The approach has been evaluated
through emulations using experimental data.

In stark contrast to these approaches that treat channel im-
pulse response (CIR) extraction and quantization as separate
processes, our proposed method jointly optimizes parame-
ter extraction and compression. Previous approaches rely
on traditional signal processing techniques like inverse dis-
crete Fourier transform (IDFT) for CIR extraction followed by
separate quantization stages, which may not be optimal for
the end-to-end feedback task. Our approach instead learns
the complete mapping from received pilots to compressed

multi-path component (MPC), allowing the network to dis-
cover the most efficient representation for feedback. This
enables our method to adapt to varying channel conditions
and achieve superior compression rates across diverse propa-
gation environments. Moreover, for the first time, we demon-
strate the practical implementation of multi-path parameter-
based feedback on commercial MIMO-OFDM hardware. Con-
versely, prior approaches only rely on simulations, analytical
studies, or custom testbeds that do not capture the full com-
plexity of practical systems.

3 System Model
This section presents the mathematical framework and theo-
retical foundations for our multi-path parameter-based feed-
back approach in MIMO-OFDM systems. We consider a sin-
gle user MIMO-OFDM system with 𝑁𝑡 transmit antennas
and 𝑁𝑟 receive antennas, operating over 𝑁𝑐 subcarriers with
bandwidth 𝐵 and subcarrier spacing Δ𝑓 = 𝐵/𝑁𝑐 . The trans-
mitted signal at the 𝑘-th subcarrier, 𝑘 ∈ {0, 1, . . . , 𝑁𝑐 − 1},
is represented as x[𝑘] ∈ C𝑁𝑡×1. The multi-user case can be
derived as a simple extension of this model.
The frequency-domain channel matrix at subcarrier 𝑘 is

hereafter denoted as H[𝑘] ∈ C𝑁𝑟 ×𝑁𝑡 , where element 𝐻ℓ,𝑟 [𝑘]
represents the complex channel gain from transmit antenna
ℓ to receive antenna 𝑟 . The received signal at subcarrier 𝑘 is
given by:

y[𝑘] = H[𝑘]x[𝑘] + n[𝑘] (1)
where n[𝑘] ∼ CN(0, 𝜎2

𝑛I𝑁𝑟
) represents additive white gauss-

ian noise (AWGN) with variance 𝜎2
𝑛 per complex dimension.

3.1 Multi-path Channel Model
The wireless propagation environment can be character-
ized by 𝑃 discrete multi-path components, where each path
𝑝 ∈ {0, 1, . . . , 𝑃 − 1} is defined by its complex amplitude
𝐴𝑝 (𝑛), propagation delay 𝜏𝑝 (𝑛), angle of departure (AoD)
𝜃𝑝 (𝑛), angle of arrival (AoA) 𝛾𝑝 (𝑛), and Doppler shift charac-
terized by 𝐷𝑝 (𝑛). The frequency-domain channel response
for transmit antenna ℓ , receive antenna 𝑟 , and subcarrier 𝑘
at time index 𝑛 is expressed as:

𝐻ℓ,𝑟,𝑘 (𝑛) =
𝑃−1∑︁
𝑝=0

𝐴𝑝 (𝑛) exp
{
− 𝑗𝜋

[
2(𝑓𝑐 + Δ𝑓 𝑘)𝜏𝑝 (𝑛)

+ ℓ sin(𝜃𝑝 (𝑛)) + 𝑟 sin(𝛾𝑝 (𝑛))

− 2𝑓𝑐𝐷𝑝 (𝑛)𝑛𝑇𝑐/𝑐
]}
, (2)

where 𝑓𝑐 is the carrier frequency,Δ𝑓 is the subcarrier spacing,
𝑇𝑐 is the sampling time, and 𝑐 is the speed of light. This
comprehensive model captures delay spread, angular spread,
and Doppler effects in the channel. Equation 2 reveals that
the number of multi-path parameters does not depend on
the MIMO configuration, i.e., the number of antennas in
the system and the bandwidth. Hence, using these 𝑃 multi-
path components described by 4 values each as the feedback
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allows reducing the overhead with respect to feeding back
all the elements of the CFR matrix for each transmitter and
receiver antenna pair and over each subchannel.

4 Performance Evaluation of
Multi-path-based Feedback

In this first evaluation, we assess the effectiveness of our pro-
posed multi-path parameter-based feedback approach. We
propose a CNN-based approach to extract the parameters
of the multi-path components. In this first implementation,
we consider the joint contribution of the phase parameters
(propagation delay, AoA, AoD, Doppler effect), i.e., we esti-
mate two parameters for each multi-path component, being
the amplitude and the phase information.

4.1 Multi-path Parameter Estimation
Once the CFR Ĥ[𝑘] is estimated at the receiver device based
on pilot signals irradiated by the transmitter, we use a learning-
based approach to extract the multi-path components to be
used as feedback information. We design a CNN-based ap-
proach that learns to extract the sparse multi-path structure
implicit in the frequency-domain measurements, effectively
performing an implicit domain transformation and parame-
ter extraction in a single step.
The CNN directly outputs the multi-path component pa-

rameters for each path 𝑝 ∈ {0, . . . , 𝑃 − 1} being the path
amplitude 𝛼𝑝 (corresponding to |𝐴𝑝 | in the full model) and
composite phase 𝜙𝑝 . The CNN architecture and training pro-
cess are detailed in Section 4.3. This parametric representa-
tion is particularly efficient for indoor environments, where
the number of significant multi-path components remains
small (typically 𝑃 < 30).
The amplitude and phase parameters for each path 𝑝 ∈

{0, . . . , 𝑃 − 1} are then quantized for feedback as follows

𝛼𝑝 = 𝑄𝑏𝛼

(
𝛼𝑝

)
, (3)

𝜙𝑝 = 𝑄𝑏𝜙

(
𝜙𝑝

)
, (4)

where 𝑄𝑏 (·) denotes a 𝑏-bit quantizer, with 𝑏𝛼 and 𝑏𝜙 rep-
resenting the bit allocations for amplitude and phase, re-
spectively. The amplitude quantization employs logarithmic
scaling to better capture the dynamic range of path gains,
while phase is uniformly quantized over [−𝜋, 𝜋).

This approach achieves significant compression while
maintaining channel reconstruction fidelity sufficient for
effective precoding.

4.2 Channel Reconstruction and Precoding at the
Transmitter

Upon receiving the quantized multi-path parameters, the
transmitter reconstructs the frequency-domain channel esti-
mate. Since the CNN outputs amplitude and phase parame-
ters without explicit delays, the reconstruction uses a com-
posite phase model:

𝐻̃ℓ,𝑟 [𝑘] =
𝑃−1∑︁
𝑝=0

𝛼𝑝𝑒
𝑗𝜙𝑝𝑒− 𝑗2𝜋𝑘Δ𝑓 𝜏 ref𝑝 , (5)

where 𝜏 ref𝑝 represents reference delays that can be predeter-
mined based on the channel’s delay spread characteristics
or learned during training. The composite phase 𝜙𝑝 implic-
itly captures the effects of array responses and path-specific
phase shifts that were present in the full model of Equation 2.
Given the reconstructed channel H̃[𝑘], the transmitter

designs the precoding matrixW[𝑘] ∈ C𝑁𝑡×𝑁𝑠 to map 𝑁𝑠 ≤
min(𝑁𝑡 , 𝑁𝑟 ) data streams to the transmit antennas. The pre-
coded signal is:

x[𝑘] = W[𝑘]s[𝑘], (6)
where s[𝑘] ∈ C𝑁𝑠×1 represents the data symbols with unit
power:

E[s[𝑘]s𝐻 [𝑘]] = I𝑁𝑠
. (7)

4.3 Simulation Results
To evaluate our proposed multi-path parameter-based feed-
back approach under realistic propagation conditions, we
leveraged Sionna’s ray tracing [6] capabilities to generate a
comprehensive dataset of wireless channel instances. Sionna’s
ray tracer simulates electromagnetic wave propagation through
complex 3D environments by computing exact ray paths
including direct, reflected, diffracted, and scattered compo-
nents based on geometric optics and the uniform theory of
diffraction. For our study, we configured indoor scenarios
with varying materials, simulating a 1 × 8 MIMO system
operating at 80 MHz bandwidth divided into 256 subcarri-
ers. As output, the ray tracer provides the channel response
decomposed into the multi-path parameters for each prop-
agation path. For each channel realization, we associated
the CFR estimated using pilot transmission with the ground
truth multi-path parameters—amplitudes {𝛼𝑙 } and phases
{𝜙𝑙 }—directly from the ray tracing output, providing physi-
cally accurate labels for supervised learning.

To estimate amplitude and phase of each multi-path com-
ponent, we developed a deep CNN-based architecture that
directly estimates multi-path parameters from CFR measure-
ments. The network employs a three-stage encoder architec-
ture with progressive feature extraction through convolu-
tional blocks, batch normalization, and dropout regulariza-
tion, followed by global average pooling and dual prediction
heads for amplitude and phase estimation. The model is
trained with Mean Square Error (MSE) loss between the pre-
dicted multi-path parameters and their ground truth values

4



Method for Multi-Antenna Networking Through
Multi-path Feedback Extraction and Reporting Conference’17, July 2017, Washington, DC, USA

0 5 10 15 20 25 30
SNR (dB)

10−5

10−4

10−3

10−2

10−1

100
B

it
 E

rr
or

 R
at

e 
(B

E
R

)
CFR-based
Multi-path Parameter-based

2×2 4×4 8×8 16×16
MIMO Configuration

0

200

400

600

800

1000

1200

1400

Fe
ed

ba
ck

 O
ve

rh
ea

d 
(k

bi
ts

)

CFR-based
Multi-path Parameter-based

Figure 2. bit error rate (BER) comparison between CFR based feedback and multi-path parameter based in simulation.
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Figure 3. Experimental setup across two distinct environ-
ments with fixed and variable STA positioning for multi-path
feedback pruning evaluation.

obtained from ray tracing simulations. This learning-based
approach enables robust path parameter extraction even
from incomplete pilot patterns, where only a subset of sub-
carriers contain pilot symbols, demonstrating the feasibility
of accurate CIR estimation in practical OFDM systems with
limited pilot overhead. Figure 2 presents the performance
comparison between CFR and multi-path parameter-based
feedback approaches across varying signal-to-noise ratio
(SNR) conditions. The BER performance (left) demonstrates
that multi-path parameter-based feedback achieves compa-
rable to CFR across SNR values, with both methods converg-
ing to approximately 10−5 BER at 30 dB SNR. Notably, the
feedback overhead comparison (right) reveals the significant

efficiency advantage of the MPC approach. This dramatic
decrease in feedback overhead is achieved by exploiting the
sparse nature of wireless channels in the delay domain. The
hatched bar patterns indicate consistent overhead increase
by increasing the MIMO dimensionality when using the CFR-
based feedback, while our multi-path-based approach adapts
to the channel’s inherent sparsity. These results validate that
multi-path parameter-based parametric feedback not only
maintains communication reliability but does so with sub-
stantially reduced signaling overhead, making it particularly
attractive for bandwidth-constrained feedback channels in
practical MIMO-OFDM systems.

5 Performance Evaluation of Multi-path
Parameter Pruning

As a second preliminary evaluation, we investigate which
MPC are required for maintaining acceptable system-level
performance through removal of weak propagation compo-
nents. By recognizing that weak multi-path components of-
ten contribute more noise than useful signal information, we
show that it is possible to achieve acceptable MIMO system
performance with fewer multi-path components. This selec-
tive approach represents a paradigm shift from comprehen-
sive channel tracking to intelligent weak multi-path recogni-
tion and removal. We designed a MIMO precoding emulator
based on real channel measurements from commercial Wi-Fi
devices for evaluating the impact of weak multi-path identi-
fication and removal on system-level performance in IEEE
802.11ax networks. Our emulator replicates the complete
physical layer processing chain while enabling controlled
evaluation of different multi-path selection strategies under
realistic propagation conditions. We systematically analyse
the trade-off between multi-path component selection and
BER degradation by identifying and removing progressively
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Figure 4. BER performance comparison across different bandwidth configurations in conference room environment with
multi-path pruning at SNR = 20 dB for both spatial streams.
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Figure 5. BER versus multi-path pruning level across different bandwidth configurations in the laboratory with changing the
location of STA.

weaker multi-path components. For an unbiased evaluation,
we develop a fair comparisonmethodology that tests all prun-
ing levels on identical channel realizations and quantifies
BER performance . This approach enables us to recognize
the minimum number of multi-path components in order to
have an acceptable system-level performance.

5.1 Experimental Setup
The experimental evaluation framework involves compre-
hensive CFR measurements across multiple bandwidth con-
figurations and indoor propagation environments to validate
the multi-path pruning approach for IEEE 802.11ax MIMO
systems. As depicted in Figure 3, the experimental testbed
utilized commercial IEEE 802.11ax equipment operating in
MIMO mode to capture authentic channel characteristics.
Specifically, ASUS RT-AX86U routers served as both the AP
and STA, and physical separation maintained at approxi-
mately 2.5 m. The wireless network operated on channel 64,
with measurements conducted across 40 MHz, 80 MHz, and
160 MHz bandwidth configurations to evaluate the impact
of frequency diversity on multi-path pruning performance.

CFR data collection was systematically conducted in two
representative indoor environments that provide contrast-
ing multi-path propagation characteristics. The first envi-
ronment was a conference room with typical office furniture
and the second environment was a research laboratory con-
taining various equipment.

To capture spatial diversity effects and angular-dependent
multi-path variations, measurements were conducted under
two distinct mobility scenarios: (i) where the STA is fixed
in one location, and (ii) where the STA was systematically
repositioned after each data collection session at different
equally-spaced locations along a distance of 2.5 meters from
the AP.

5.2 Experimental Results
Figure 4 and Figure 5 demonstrate that multi-path pruning
can safely eliminate up to 50% of the weakest multi-path com-
ponents (pruning levels 0–4) without significantly degrade
communication performance, i.e., maintaining BER values
below 0.1 across diverse indoor environments. Beyond the
critical threshold at pruning level 5, system performance de-
teriorates dramatically with BER increasing to 0.4–0.5, which
indicates that essential propagation information required for
effective precoding is being removed. The results reveal re-
markable bandwidth-invariant behavior across 40, 80, and
160 MHz configurations, that suggests pruning effectiveness
is governed by spatial-temporal propagation characteristics
rather than spectral occupancy.

6 Conclusions
In this report, we propose a new approach for channel feed-
back in MIMO networks which overhead is independent
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on the number of antennas in the system and the opera-
tional bandwidth. Our approach, based on multi-path param-
eter decomposition, allows drastically reducing the feedback
overhead thus enabling large scale MIMO deployments. The
proposed method achieved approximately more than 90%
reduction in feedback overhead by exploiting the sparse
multi-path structure of wireless channels, while maintain-
ing BER performance comparable to standard CFR-based
feedback across all SNR ranges. We show that the integra-
tion of a deep CNN for multi-path parameter estimation
enables robust extraction of amplitude and phase informa-
tion from the CFR, which validates the practical feasibility
of the approach. In addition, we show that weak multi-path
components can be pruned without significally impacting
communication performance. Overall, this work establishes
multi-path parameter-based feedback as a promising tech-
nique for large-scale MIMO networks and is particularly
relevant for emerging 5G and beyond systems where effi-
cient CFR acquisition remains a fundamental challenge.
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