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Abstract—While Deep Learning (DL) has achieved remark-
able success in Network Intrusion Detection System (NIDS), its
inherent data-driven nature makes it vulnerable to distribution
shift. This limitation exposes DL-based NIDS to both adversarial
attacks that are crafted by adding subtle change to original
samples and zero-day attacks that are out-of-distribution (OOD)
data unseen during training. However, existing work focusing on
adversarial detection often fails to identify zero-day attacks and
vice versa, leaving a security gap in DL-based NIDS. We propose
NI-Diff, a novel detection approach that can effectively iden-
tify both adversarial network flow as well as zero-day intrusion
by estimating their distribution with generative models. More
specifically, we leverage a variational auto-encoder to map the
network flow into a latent space and use a diffusion model to
reconstruct the likely-hood from noise. Our key intuition is that
the in-distribution data and the reconstructed data will have a
similar likelyhood which results in similar inference output in
the DL classifier. Extensive experiments on two large-scale NIDS
datasets demonstrate that our approach can effectively identify
97% adversarial network flow and 92% zero-day threat with
less than 2% false positive rate, outperforming state-of-the-art
adversarial detection and OOD detection baselines.

Index Terms—Network Intrusion Detection, Diffusion Models,
Adversarial Detection, OOD Detection

I. INTRODUCTION

Emerging technologies such as augmented/virtual reality
(AR/VR), smart home, and intelligent healthcare create an
increasingly sophisticate Internet-of-Things (IoT) network [1].
Network security has becomes a significant concern in the
expanding interconnected system. Traditional Network Intru-
sion Detection System (NIDS) based on feature engineering
provide insufficient protection against evolving intrusions [2].
While Deep Learning (DL) has emerged as a promising so-
lution to improve the robustness of NIDS [3, 4], it relies
on the large-scale network data to train the classifier. This
data-driven nature makes the system vulnerable to zero-day
attacks that are new network threats not encountered during the
training phase [5]. In addition, Deep Neural Networks (DNNs)
exhibit susceptibility to adversarial actions, where a negligible
manipulation to input data can dramatically impact inference
outcomes [6], potentially compromising the detection perfor-
mance of NIDS .

To address the challenge, various out-of-distribution (OOD)
detection and adversarial detection methods are proposed for
NIDS [7–9]. However, one fundamental limitation is that ex-
isting work is often specifically designed for one threat but
neglect the detection performance on the other threat. For

example, research that can detect zero-day intrusions often
fails to identify adversarial attacks and vice versa. In addition,
most of existing work are based on small-scale dataset [7, 9–
11], lacking of evaluation on modern IoT network.

We propose NI-Diff, a framework that is capable to
jointly detection zero-day and adversarial network intrusions
with diffusion models [12]. It consists of three key compo-
nents: a multi-class DNN classifier that detects known benign
traffic and network intrusions; a variational auto-encoder [13]
that transforms network flows into estimated distributions; and
a diffusion model [12] to reconstruct the estimated distribution
from noise. The key idea is that the distribution shift introduced
by zero-day and adversarial network intrusions can be captured
and amplified during the diffusion-denoising process, hence
resulting in noticeable differences in the DNN classifier’s out-
put. We evaluate the proposed framework on ACIIoT-2023 [14]
and CICIoT-2023 [15] which are two most recent and large-
scale IoT datasets using both OOD samples and two different
adversarial attacks.

Summary of Novel Contributions

• We investigated how diffusion models can effectively capture
the subtle distribution shifts of adversarial and OOD samples.
A new defensive framework NI-Diff is introduced to jointly
detect both zero-day and adversarial network intrusions. To the
best of the authors’ knowledge, this is the first work to leverage
diffusion models for both OOD and adversarial detection in the
cybersecurity domain.
• We conducted comprehensive evaluations using two recent
large-scale IoT datasets [14, 15], providing greater relevance
to next-generation IoT network. In addition, we designed two
distinct types of adversarial network intrusions–gradient-based
and generative model-based attacks–offering a more thorough
evaluation than existing adversarial detection research [7, 11]
that focuses exclusively on gradient-based adversarial samples.
• We compared NI-Diff with 3 state-of-the-art adversarial
detection methods [7, 11, 16], and 3 commonly used OOD
baselines [17–19]. Our experimental results demonstrate that
NI-Diff can effectively detect up to 97% and 92% zero-
day and adversarial network intrusions with less than 2% false
positive rate, significantly outperform other six baselines.

II. RELATED WORKS

Network Intrusion Detection. Network traffic can be ana-
lyzed at either the packet or flow level. In packet-level intrusion



detection, researchers typically process packet payloads as
images and apply computer vision techniques such as Con-
volutional Neural Network (CNN) to classify the payload as
either benign or malicious. For example, De Lucia et al. [4]
demonstrated that 1D-CNN can achieve superior performance
compared to traditional methods by directly using raw network
bytes. Zhang et al. [20] proposed a new encoding scheme to
transform packets to two-dimensional gray-scale images and
used CNN for classification. Ghadermazi et al. [21] proposed
an algorithm to encode packets into RGB images. On the other
hand, flow-level detection approaches first extract features of
bidirectional network flows between source and destination
devices (e.g. inter arrival time, average payload length, etc.),
and then train a multi-class DNN classifier based on these
aggregated flow-level features. For example, Xiao et al. [22]
utilized CNN for network traffic classification. Sun et al.
[23] proposed a hybrid architecture combining both CNN and
Recurrent Neural Network (RNN) to improve accuracy. In this
work, we consider adversarial and zero-day attacks at the flow
level.
Adversarial Detection. Adversarial attacks on DNN were first
introduced in [24] for computer vision where an invisible
perturbation can result in significant difference in the output,
hampering the performance of the DL system. Adversarial
detection is proposed to identify attack samples at test time
without compromising the DNN performance. For example,
Drenkow et al. [16] proposed a random projection method
to map latent representations to multiple low dimensional
manifolds to magnify the difference between adversarial and
clean data. However, as the network data presents a different
structure compared to images, adversarial attacks to NIDS
has physical-world constraints to create a realistic adversarial
network traffic [25, 26]. This makes detection methods in
computer vision less effective to identify adversarial samples
in network intrusions. To this end, a vast amount of effort
is made to detect adversarial network intrusions. Wang et al.
[7] revealed that the adversarial network intrusion is often an
outlier in the transformed manifold hence can be detected with
manifold learning methods. Kumar et al. [11] used an auto-
encoder to detect the adversarial intrusion samples.
OOD Detection. Real world input data can be open-set and
unknown, making it challenging for DNN trained with close-
set data to process the new information. Therefore, a secure
and robust DL system needs the ability to identify if the
input is valid in-distribution sample or OOD. Existing research
aims to design advanced score function to differentiate the
in-distribution and OOD samples. Fore example, Liu et al.
[17] proposed a generalized entropy score that can assess the
uncertainty of the DNN output to detect OOD samples. Liu
et al. [18] proposed to identify the OOD using the energy
function of output logits. Huang et al. [19] designed the score
function in gradient space by measuring the Kullback–Leibler
Divergence (KLD) between the gradient of output and the
gradient of the uniform distribution. Research in cybersecurity
also refers to OOD detection as zero-day attack detection or

novelty detection. Matejek et al. [8] introduced normalizing
flow to detect zero-day network intrusions while Bradley et al.
[27] estimated the probability of zero-day attack using survival
analysis. Baye et al. [9] proposed a multi-step approach includ-
ing top-difference classification and energy-based detection for
detecting unknown network activities.

Diffusion Models. Ho et al. [12] proposed a Denoising Dif-
fusion Probabilistic Model (DDPM) that can generate realistic
new image from noise. It involves a diffusion process that grad-
ually adds Gaussian noise to the original data and a denoising
process that can reconstruct meaningful information from the
noise. Recent research has demonstrated the effectiveness of
diffusion models in improving adversarial robustness [28]. In
the cybersecurity domain, Cai et al. [29] leveraged diffusion
models to address the data imbalance issue in NIDS while
Zhang et al. [30] proposed a hierarchical diffusion model to
generate new network flows. Alhussien and Aleroud [31] used
diffusion models to denoise the adversarial perturbation hence
improving the robustness of the NIDS. Although this method
[31] can protect the system from adversarial attacks, it lacks
the capability to handle unseen zero-day threats. In contrast,
we propose a novel approach that can jointly detect adversarial
and OOD network intrusions using diffusion models.

III. THE NI-DIFF FRAMEWORK

Figure 1 demonstrates the system framework of NI-Diff,
which consists of a multi-class DNN classifier, an auxiliary
distribution modeling block and a zero-day/adversarial detec-
tion block. The DNN classifier is trained to identify benign and
various known network intrusions. In the distribution modeling
block, a Variational Auto-Encoder (VAE) is used to transform
known network traffic into a likelihood function while a dif-
fusion model is used to learn this distribution. During infer-
ence, detection is achieved by measuring the Kullback–Leibler
Divergence (KLD) between the softmax score of the original
data and the output of the reconstructed data using distribution
modeling block.
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Fig. 1: Overview of NI-Diff framework.

DNN classifier. For multi-class network traffic classification,
we implemented two distinct DNN architectures for the two
different datasets. We first chose a vanilla 1D-CNN model
comprising 5 convolutional layers, each followed by batch
normalization, ReLU activation and maxpooling. We denote



this model as NI-Diff-base. However, to achieve a better
classification performance on the more complex CICIoT-2023
dataset, we integrated residual connections and self attention
with the basic model, denoted as NI-Diff-large. Table I
summarizes these two model architectures.

TABLE I: Summary of DNN Classifiers

NI-Diff-base NI-Diff-large
Conv 1×3, 16 Res 64, Self Attn
Conv 1×3, 16 Res 128, Self Attn
Conv 1×3, 32 Res 256, Self Attn
Conv 1×3, 32 Res 512, Self Attn
Conv 1×3, 64 Res 1024, Self Attn
Linear 64×n Linear 1024×n

Variational Auto-Encoder. Prior research has demonstrated
that diffusion models can enhance adversarial robustness in
NIDS [31]. The basic idea is to use the diffusion model as
a purifier to remove adversarial noise in network flow data.
It first introduces Gaussian noise to network traffic during
the diffusion process, which can successfully masks the ad-
versarial noise. Subsequently, the diffusion model can purify
the added noise during with denoising, hence enhancing the
robustness. However, this approach has significant limitations
when applied to real world network traffic data which contains
symbolic features with specific physical meanings (such as
ACK flag counts and number of packets). Introducing noise
to these symbolic input can break their semantic integrity,
resulting in unstable detection performance.

To address this challenge, we first leverage a VAE to trans-
form the data into a probabilistic latent space and then apply
the diffusion model to the probabilistic representation. For-
mally, the encoder can be denoted as qϕ(z|x) and the decoder is
denoted as pθ(x|z), where x and z are input and latent variable,
respectively. The model is trained to maximize the evidence
lower bound [13],

L(θ, ϕ, x) = Eqϕ(z|x)( log(pθ(x|z))︸ ︷︷ ︸
Reconstruction

−DKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
KL divergence

).

(1)
In practice, the reconstruction in equation 1 is measured with

mean square error (MSE) between x and the reconstructed x′

while the KLD is measured between the latent variable z and
a normal distribution p(z) ∼ N(0, I). In addition, we applied
perceptual loss [32] to ensure the semantic properties of the
reconstructed network traffic data. The total loss becomes

L = MSE(x, x′)︸ ︷︷ ︸
reconstruction

+ λ1 ·KLD(qϕ(z|x)||p(z))︸ ︷︷ ︸
KL divergence

+ λ2 · Pl︸ ︷︷ ︸
perceptual

.

(2)
In practice, the trade-off factors λ1 and λ2 in Equation 2

are set to 1e-6 and 1e-3 respectively. We use identical VAE
architecture for the two DNN classifiers and datasets. It is
composed of 6 layers of 1 × 3 1D-CNN for both encoder and
decoder. A maxpooling and upsampling is used to rescale the
dimension after every two convolutional layers in both encoder
and decoder, except for the last layer pairs. All layers maintain

a uniform channel dimension of 64, with two exceptions: the
encoder’s final layer employs 2 channels (for the reparame-
terization trick [13]), while the decoder’s final layer utilizes a
single channel.
Diffusion Models can be modeled with Markov chains involv-
ing two processes: i) a diffusion process that gradually add
noise to the input, and ii) a denoising process that reconstructs
input from the noise. Formally, for a input x0, the diffusion
process at step t can be described as

q(xt|xt−1) = N(
√

1− βtxt−1, βtI), (3)

where xt, q(xt|xt−1) and N(·, ·) denotes the random variable,
conditional distribution at step t, and Gaussian distribution
respectively. βt is a hyper parameter to control the noise factor
added to the input at step t.

Similarly, the denoising process at step t can be described as

pθ(xt−1|xt) = N(µθ(xt, t), σθ(xt, t)). (4)

To train the denoising process to reverse the diffusion, the
objective can be reduced to

Lθ = Eϵ∼N(0,I)(||ϵ− ϵθ(xt, t)||2) (5)

where ϵθ is the estimated noise and ϵ is the standard Gaussian
noise.

It has been shown in [28] that diffusion models can be
used to enhance the adversarial robustness without retrain-
ing the DNN classifier. The key idea is that the diffusion-
denoising process can generate samples that closely align with
the original training distribution, causing adversarial samples
and generated samples to produce distinct outputs from the
DNN classifier. We extend this idea to detect adversarial and
zero-day threats by applying diffusion models to a probabilistic
latent space. In practice, a denoising U-Net [12] is trained to
predict the noise using Equation 4. We developed a custom
U-Net architecture that incorporates 1D-CNN, residual con-
nection and self-attention blocks. However, unlike the DNN
classifier which uses batch normalization and ReLU activation,
the U-Net employs group normalization and SiLU activation.
The details of the model are summarized in Table II.

TABLE II: Summary of denoising U-Net

Down Mid Up
Conv 1×3, 32 Res 128 Res 64

Res 32 Self Attn 128 Res 32
Res 64 Res 128 Conv 1×3, 1

Detection Algorithm. One advantage of NI-Diff is that
the adversarial/zero-day detection is based on the auxiliary
distribution modeling block without affecting the DNN clas-
sification. During testing, the system will classify the network
traffic x using the DNN classifier f(x) = y. In parallel,
the variational encoder E(x) = z will map the input to a
likelihood and the diffusion model DM(z) = z′ will sample a
new likelihood. z′ is then processed by the variational decoder
D(z′) and the classifier f(D(z′)) = y′. The difference be-
tween z and z′ is measured with the KLD between the softmax



score y and y′. Note that Carlini et al. [28] suggested that
one-step denoising can provide more stable results compared
to a large timestep of denoising. As such, we use one-step
diffusion-denoising for generating new z′. Algorithm 1 de-
scribes the joint classification and attack detection process of
our NI-Diff framework.

Algorithm 1 Classification and Attack Detection

Initialize: DNN classifier f(·), variational encoder E(·), de-
coder D(·), diffusion model DM(·), threshold T , detection
flag ρ.
Input: network traffic x
y = f(x), z′ = DM(E(x)), y′ = f(D(z′))
If DKL(y; y

′) < T return y
Else return ρ

IV. EXPERIMENTAL SETUP

Dataset. We assess NI-Diff with two recent IoT datasets:
ACIIoT-2023 [14] and CICIoT-2023 [15]. For the ACIIoT
dataset, which contains 1.2 million flow-level samples across
12 different classes, we employ the NI-Diff-base model and
utilize the complete dataset for our evaluation. The CICIoT
dataset is more extensive, comprising over 20 million flow-
level samples distributed across 34 different classes which can
be further categorized into 8 super classes. In this case, we
implement the NI-Diff-large model and perform balanced
resampling to extract 1.2 million samples from the original
dataset.

Training Recipe. DNN classifiers for both dataset are trained
using Adam optimizer with a learning rate of 1e-4 and a
batchsize of 1024 for 50 epochs. VAEs are trained using the
same optimizer and learning rate setting but for 100 epochs.
Diffusion models are trained for 1000 epochs using Adam with
a smaller learning rate of 1e-5 and exponential moving weight
average. The βt in Equation 3 is chosen from 1e-4 to 0.02 using
linear increasing schedule and the maximum timestep is 1000.
All experiments are performed on a Nvidia RTX A4000 GPU.

Attack Model. For ACIIoT dataset, we select Vulnerability
scan, UDP flood and ARP spoofing as the zero-day attacks
and the classifier only uses 9 classes of data for training. For
CICIoT, we select all data from 4 super classes Brute force,
Spoofing, Recon and Web-based as zero-day samples and the
classifier leverages the remaining 20 classes for training.

For adversarial attack, we employ both gradient-based [33]
and Generative Adversarial Network (GAN)-based [34] ap-
proaches. We consider target attack aiming to manipulate intru-
sion data to be misclassified as benign. To ensure the realism of
generated data, we put constraints on the symbolic features and
only modify those statistical features such as average length,
inter arrival time, etc.

Baseline Methods. We compare our method to 3 OOD detec-
tion baselines: GEN [17], Energy [18], and GradNorm [19].
In addition, we evaluate NI-Diff in comparison with 3

adversarial detection baselines: MANDA [7], DeepRP [16] and
NIDS-DA [11].

V. PERFORMANCE EVALUATION

We first assess the effectiveness of DNN classifiers and
adversarial attacks. Table III shows the DNN classification
accuracy and the attack success rate (ASR) of gradient-based
and GAN-based attacks. NI-Diff can achieve up to 99% ac-
curacy on in-distribution network intrusions while adversarial
attacks successfully cause around 90% of malicious data to be
misclassified as benign.

TABLE III: Accuracy and Attack Success Rate

Acc ASR (Grad) ASR (GAN)
ACIIoT 99.19% 98.30% 99.97%
CICIoT 99.42% 89.29% 99.97%

We evaluate the adversarial/zero-day detection performance
of NI-Diff in comparison to other baseline methods using
various metrics. First we consider True Positive Rate (TPR)
and False Positive Rate (FPR) that directly measure the cor-
rectness of detectors in malicious and benign cases. Tables IV
and V summarize the TPR and FPR of three different attack
scenarios for ACIIoT and CICIoT dataset respectively.

For the ACIIoT dataset, those OOD detection methods are
less effective in identifying adversarial samples. For example,
GradNorm detects 0.95% gradient-based and 0% GAN-based
attacks. On the other hand, adversarial detection baselines
demonstrate a significant performance loss when applied to
zero-day attacks. Only DeepRP shows high detection rate on
both zero-day and adversarial attacks but it comes at a cost
of higher FPR. In contrast, NI-Diff demonstrates the best
TPR on adversarial attacks and a comparable TPR on zero-day
attacks with a lowest FPR on in-distribution data.

For CICIoT, OOD detection baselines achieve decent per-
formance on adversarial attacks but are underperforming on
zero-day samples. This is because the CICIoT dataset has a
larger scale compared to ACIIoT, making the OOD samples
more difficult to identify while increasing the complexity for
adversarial attacks to succeed. As such, effective and realistic
adversarial samples are more like OOD samples [10]. This
also makes the adversarial detection baselines less effective in
detecting the gradient-based attack. Compared to other base-
lines, NI-Diff demonstrates the best detection performance
on zero-day and GAN-based attacks while a comparable per-
formance on gradient-based and in-distribution samples.

TABLE IV: True and False Positive Rate for ACIIoT

TPR (zero-day) TPR (grad) TPR (GAN) FPR
GEN 95.90% 50.25% 0.63% 8.63%

Energy 93.73% 64.64% 5.33% 7.52%
GradNorm 89.27% 0.95% 0.00% 12.76%
MANDA 6.55% 85.17% 61.38% 8.54%
DeepRP 95.54% 84.77% 84.94% 11.62%

NIDS-DA 1.95% 1.49% 69.28% 6.05%
NI-Diff 91.86% 97.05% 88.50% 1.59%



TABLE V: True and False Positive Rate for CICIoT

TPR (zero-day) TPR (grad) TPR (GAN) FPR
GEN 38.38% 99.96% 99.97% 4.89%

Energy 39.64% 99.82% 99.97% 4.31%
GradNorm 30.11% 99.86% 99.94% 6.05%
MANDA 11.77% 56.77% 99.95% 13.87%
DeepRP 16.96% 3.96% 94.97% 2.02%

NIDS-DA 13.38% 32.73% 94.74% 3.70%
NI-Diff 51.18% 94.31% 99.98% 3.28%

TPR and FPR evaluate the detector’s performance from lim-
ited perspectives focusing solely on either attack scenarios or
in-distribution data. To have a more comprehensive evaluation,
we compared NI-Diff with other baselines using precision
and F1 score, which offer balanced evaluations that consider
both attack and in-distribution data simultaneously. Tables VI
and VII show the precision and F1 score for ACIIoT and
CICIoT. As shown, NI-Diff constantly outperforms other
baselines in both metrics on ACIIoT. For CICIoT, NI-Diff
achieves the best performance on zero-day and GAN-based
attacks and has a comparable performance on gradient-based
attack.

TABLE VI: Precision and F1 Score for ACIIoT

Zero-day Gradient GAN
P F1 P F1 P F1

GEN 90.87% 93.32% 85.34% 63.25% 6.80% 1.15%
Energy 92.57% 93.15% 89.58% 75.09% 41.48% 9.45%

GradNorm 87.49% 88.37% 6.93% 1.67% 0.00% 0.00%
MANDA 43.41% 11.38% 90.88% 87.93% 87.78% 72.24%
DeepRP 89.16% 92.24% 87.94% 86.32% 87.97% 86.43%

NIDS-DA 24.37% 3.61% 19.76% 2.77% 91.97% 79.03%
NI-Diff 98.30% 94.97% 98.39% 97.91% 98.23% 93.11%

TABLE VII: Precision and F1 Score for CICIoT

Zero-day Gradient GAN
P F1 P F1 P F1

GEN 88.70% 53.58% 95.34% 97.59% 95.34% 97.60%
Energy 90.19% 55.07% 95.86% 97.80% 95.87% 97.88%

GradNorm 83.27% 44.23% 94.29% 96.99% 94.29% 97.03%
MANDA 45.90% 18.74% 80.37% 66.54% 87.81% 93.49%
DeepRP 89.36% 28.51% 97.92% 96.42% 66.22% 7.47%

NIDS-DA 78.34% 22.86% 89.84% 47.98% 96.24% 95.48%
NI-Diff 93.98% 66.27% 96.64% 95.46% 96.82% 98.37%

Precision and F1 scores are threshold-dependent metrics that
evaluate the performance with a specific detection threshold.
To this end, we further study the performance under different
detection threshold settings using the area under the receiver
operating characteristic (AUROC). Table VIII summarizes
AUROC results for three attack types across both datasets. As
demonstrated, OOD detectors demonstrate poor effectiveness
against adversarial samples. For instance, GradNorm on the
ACIIoT dataset achieves merely 33.55% and 7.58% AUROC
for gradient and GAN-based attacks respectively–falling below
the 50% threshold that indicates random guessing, essentially
rendering it unable to distinguish between in-distribution and
adversarial samples. Conversely, adversarial detection methods
struggle with OOD sample identification. MANDA, for exam-
ple, achieves only 26.17% AUROC on the CICIoT dataset. In
contrast, NI-Diff achieves the best performance in detecting

zero-day and GAN-based attacks across both datasets. For the
gradient attack, NI-Diff achieves the best performance on
the ACIIoT dataset while maintaining comparable effective-
ness on CICIoT.

TABLE VIII: AUROC for ACIIoT and CICIoT

Zero-day Gradient GAN
ACI CIC ACI CIC ACI CIC

GEN 97.14% 82.05% 74.35% 99.89% 29.76% 99.33%
Energy 97.72% 84.01% 83.07% 99.90% 49.55% 99.42%

GradNorm 93.74% 76.50% 33.55% 99.71% 7.58% 99.39%
MANDA 84.99% 26.17% 90.79% 82.33% 89.01% 97.71%
DeepRP 98.16% 58.41% 92.04% 62.97% 92.62% 97.51%

NIDS-DA 87.69% 83.69% 86.45% 98.08% 96.61% 99.48%
NI-Diff 98.85% 95.70% 99.61% 99.46% 98.55% 99.94%

In Algorithm 1, the diffusion model uses one-step denoising
for a stable detection performance. This is because the detec-
tion algorithm is based on the DNN classifier’s capacity to dis-
tinguish anomaly and normal data. While a large timestep can
help diffusion to generate high quality data from noise, these
synthetic data may be semantically new to the classifier, hence
resulting in an unstable detection performance. To demonstrate
this point, we study the detection performance of NI-Diff
as a function of denoising timesteps using ACIIoT dataset.
As demonstrated in Figure 2, NI-Diff achieves the lowest
FPR and highest TPR with one-step diffusion. With a growing
timestep, the FPR and TPR converge to around 70%, which
indicates that the DNN classifier cannot distinguish between
the newly generated normal data and anomaly data. This one-
step setting makes NI-Diff fundamentally different from
other work using diffusion models as a data generation tool
[29, 30].
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Fig. 2: NI-Diff performance on ACIIoT as a function of
denoising timesteps.

VI. CONCLUSION

We proposed a novel framework to jointly detect zero-day
and adversarial attacks against network intrusion detection
systems using diffusion models. Experiments on two recent
IoT datasets demonstrated that the proposed approach can
effectively identify 97% and 92% adversarial and zero-day
threats with less than 2% false positive rate, and uniformly



outperform six other state-of-the-art methods across various
metrics. In future work, we aim to apply this framework to
packet-level zero-day and adversarial intrusion detections.
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