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A B S T R A C T

In this paper, we propose BeamSense, a completely novel approach to implement standard-compliant
Wi-Fi sensing applications. Existing work leverages the manual extraction of the uncompressed channel
state information (CSI) from Wi-Fi chips, which is not supported by the 802.11 standards and hence
requires the usage of specialized equipment. On the contrary, BeamSense leverages the standard-compliant
compressed beamforming feedback information (BFI) (beamforming feedback angles (BFAs)) to characterize
the propagation environment. Conversely from the uncompressed CSI, the compressed BFAs (i) can be recorded
without any firmware modification, and (ii) simultaneously captures the channels between the access point and
all the stations, thus providing much better sensitivity. BeamSense features a novel cross-domain few-shot
learning (FSL) algorithm for human activity recognition to handle unseen environments and subjects with a few
additional data samples. We evaluate BeamSense through an extensive data collection campaign with three
subjects performing twenty different activities in three different environments. We show that our BFAs-based
approach achieves about 10% more accuracy when compared to CSI-based prior work, while our FSL strategy
improves accuracy by up to 30% when compared with state-of-the-art cross-domain algorithms. Additionally,
to demonstrate its versatility, we apply BeamSense to another smart home application – gesture recognition
– achieving over 98% accuracy across various orientations and subjects. We share the collected datasets and
BeamSense implementation code for reproducibility – https://github.com/kfoysalhaque/BeamSense.
1. Introduction

Since 1990, Wi-Fi has become the technology of choice for Internet
connectivity in indoor environments [1]. Beyond connectivity, Wi-Fi
signals can be used as sounding waveforms to perform activity recog-
nition [2], health monitoring [3], and human presence detection [4],
mong others [5]. The intuition behind Wi-Fi sensing is that humans

act as obstacles to the propagation of radio signals in the environment.
Specifically, when encountering the human body, the radio waves
ndergo reflections, diffractions, and scattering that make the signals
ollected at the Wi-Fi receiver differ from the transmitted ones. Wi-Fi
ensing aims at detecting the changes in the Wi-Fi signals and associat-

ing them to the way the subject stays/moves in the environment, thus
realizing device-free monitoring solutions. To date, the vast majority
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of Wi-Fi sensing systems – discussed in Section 2 – leverage channel
measurements obtained from pilot symbols as sensing primitive. Such
measurements are usually referred to as CSI and describe the way
the signals propagate in the environment. Despite leading to good
performance, CSI-based techniques require extracting and recording the
CSI estimated by the Wi-Fi devices involved in the sensing activities,
and such operations are currently not supported by the IEEE 802.11
standard. This has led to the introduction of custom-tailored firmware
modifications to extract the CSI [6–10], which makes the sensing
process not scalable. Such CSI extraction tools only provide support
for single-user multiple-input multiple-output (MIMO) sensing as the
channel is sounded on the link between the transmitter and the device
implementing the extraction tool. Therefore, Wi-Fi sensing approaches
relying on CSI extraction tools cannot benefit from the spatial diversity
ttps://doi.org/10.1016/j.comnet.2024.111020
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 data mining, AI training, and similar technologies. 
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Fig. 1. CSI-based vs. BFI-based Wi-Fi sensing.

that can be gained through multi-user MIMO (MIMO) transmissions.
patial diversity may be achieved considering multiple CSI collectors
ut this would increase the computation burden as synchronization
mong the devices would be needed. Moreover, even if CSI extraction
ould be supported in the future without the need for custom-tailored
irmware modifications, it would require additional processing to ex-
ract the data from the chip, thus increasing energy consumption.
herefore, we argue that more suitable approaches to Wi-Fi sensing
hould be put forward.

In this paper, we propose BeamSense, an entirely new approach
o Wi-Fi sensing that leverages the MU-MIMO capabilities of Wi-Fi to
rastically increase sensing performance while substantially reducing
ensing overhead. As shown in Fig. 1, BeamSense leverages the
ompressed BFI (BFAs)– traditionally used to beamform transmissions
 to estimate the propagation environment between the access point
AP) and the connected stations (STAs). In stark contrast with CSI-
ased sensing, BeamSense (i) does not need firmware modifications,
ince any off-the-shelf Wi-Fi device can capture BFI packets, which are
ent unencrypted to keep the processing delay below a few millisec-
nds [11]; and (ii) does not require synchronization among receivers,
ince a single BFAs report contains the information about all the

MIMO channels established between the AP and the STAs. In fact,
while devices empowered with CSI extraction tools allow obtaining
information on a single MIMO channel, when capturing the BFAs we
obtain the channel information associated with all the STAs involved
in a MU-MIMO transmission. Thus, multiple spatially diverse channel
information is collected with a single capture. For this reason, Beam-
Sense exhibits far better performance in challenging environments, as
shown in Section 4.

This paper provides the following contributions:
∙ We propose BeamSense, a new approach to Wi-Fi sensing where the
standard-compliant BFAs routinely sent in MU-MIMO Wi-Fi networks
s used to characterize the propagation environment between the MU-
IMO users and the AP. To the best of our knowledge, this is the first
ork proposing the utilization of BFAs to perform Wi-Fi sensing;
We propose a deep learning (DL)-based Fast and Adaptive Micro
eptile Sensing (FAMReS) algorithm to perform activity classification
ased on BFAs. We chose DL since it has shown remarkable perfor-
ance in classifying activities in Wi-Fi sensing settings [12]. However,

t is well-known that bare-bone DL models may perform poorly when
ested in different settings [13]. For this reason, FAMReS leverages FSL
o quickly generalize to different subjects and environments with few
dditional data points;
We extensively evaluate BeamSense through a comprehensive data
ollection campaign, with three subjects performing twenty different
ctivities in three different environments. For that, we built a re-

onfigurable IEEE 802.11ac MU-MIMO network with three STAs and

2 
ne AP. The Wi-Fi network was also synchronized with a camera-
ased system that records the ground truth for our experiments. A
econdary co-located IEEE 802.11ac network empowered with Nexmon
SI [8] concurrently collects the CSI measurements used for com-
arative analysis. We show that our BFAs based approach combined
ith a traditional convolutional neural network (CNN) without data
re-processing achieves about 10% more accuracy when compared to
tate-of-the-art CSI-based techniques with substantial pre-processing.
oreover, FAMReS improves accuracy by up to 30% and 80% when

ompared with state-of-the-art cross-domain algorithms.
We demonstrate the versatility of BeamSense by applying it to

nother smart-home application – gesture recognition – achieving over
98% accuracy across varying orientations and subjects. We show that
also in this application, FAMReS significantly outperforms state of the
rt (SOTA) methods like OneFi and WiTransfer, showcasing its robust

generalization capabilities. For reproducibility, we released the en-
tirety of our 800 GB datasets and BeamSense implementation
code at https://github.com/kfoysalhaque/BeamSense.

The rest of the article is organized as follows. In Section 2 we review
the existing literature in the area. The BeamSense Wi-Fi sensing
system is illustrated in Section 3 whereas the performance evaluation of
the system is presented in Section 4. Section 5 concludes the discussion.

2. Related work

Over the last ten years, a lot of efforts have been made to explore
wireless sensing, which is summarized by Liu et al. in [14]. The first
Wi-Fi sensing approaches were based on the received signal strength
indicator (RSSI) [15–20]. More recently, researchers have focused on
the more fine-grained CSI information that describes how the wireless
channel modifies signals at different frequencies rather than providing
a cumulative metric on the signal attenuation as the RSSI does. Passive
Wi-Fi radar (PWR)-based approaches [21–25] have also been proposed
in the literature. However, such an approach requires specialized hard-
ware (software defined radio (SDR)) to analyze the collected signal. In
the rest of the section, we focus on CSI-based sensing, and summarize
the main research on the topic.

Background on CSI-based Sensing. The term CSI can refer both
to the time-domain channel impulse response (CIR) or the frequency-
domain CFR. Specifically, the CIR encodes the information about the
multipath propagation of the transmitted signal: each peak in the CIR
represents a propagation path characterized by a specific time delay
(linked with the length of the path) and an attenuation. Multipath
propagation is a typical phenomenon of indoor environments, where
obstacles (objects, people, animals) in the surroundings act as reflec-
tors/diffractors/scatterers for the irradiated wireless signals. In turn,
the receiver collected different copies of the transmitted signal each
associated with a different propagation, or, equivalently, an obstacle
in the environment. The CFR represents the Fourier transform of the
CIR and describes how the environment modifies signals transmitted
with different carrier frequencies. Specifically, indicating with 𝐱(𝑓 , 𝑡)
nd 𝐲(𝑓 , 𝑡) the frequency domain representation of the transmitted
nd received signals at time 𝑡 and frequency 𝑓 respectively, and with
(𝑓 , 𝑡) the CFR, we have that 𝐲(𝑓 , 𝑡) = 𝐡(𝑓 , 𝑡) × 𝐱(𝑓 , 𝑡) [26]. Consid-

ering the 𝑀 × 𝑁 MIMO orthogonal frequency-division multiplexing
(OFDM) system, with 𝐾 sub-channels, and 𝑀 and 𝑁 transmitting and
receiving antennas respectively, the CFR is a 𝐾 ×𝑀 × 𝑁-dimensional
matrix providing the amplitude and phase information over each OFDM
sub-channel for any given pair of transmitting and receiving antenna.

Existing Research on CSI-based Sensing. Over the last decade,
CSI-based sensing has been proposed for a wide variety of applications.
Among the most compelling, we mention person detection and identi-
fication [27–29], crowd counting [18,30], respiration monitoring [31],
baggage tracking [32], smart homes [33,34], human pose tracking [35–

38], patient monitoring [39,40], with most of the previous research

https://github.com/kfoysalhaque/BeamSense
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Fig. 2. Advantages of BeamSense over CSI-based approaches in terms of sensing
verhead and system latency.

ctivities focusing on human activity recognition (HAR) and human
esture recognition (HGR) [13,41–45]. The above list is definitely not
xhaustive. For excellent survey papers on the topic, we refer the
eader to [2,5,46,47]. In the following, we just summarize the most
ecent approaches that are most related to the work conducted in this
rticle. Guo et al. presented WiAR [48], a CSI-based system achieving

up to 90% accuracy in the recognition of 16 human activities. Similarly,
a meta-learning-based approach called RF-Net was presented in [49]
based on the usage of recurrent neural networks with long short-term
memory (LSTM) cells. However, only six activities were considered
in the evaluation. Regarding HGR, [43,44] presented Widar 3.0 and
OneFi, respectively considering six and forty gestures. The authors
in [43] proposed to use a body velocity profile (BVP) measure which
has been shown to improve the generalization capability of the classifi-
cation algorithm. The authors of [44] used one-shot learning to classify
unseen gestures with few labeled samples. The majority of previous
work has been evaluated on 802.11n channel data while, to the best
of our knowledge, only two works considered HAR in the context of
802.11ac [12,13]. Meneghello et al. proposed to use the Doppler shift
estimated through the CSI to obtain an algorithm that generalizes to
different environments [13] whereas, Bahadori et al. used few-shot
learning approach to achieve environmental robustness [12].

Limitations of CSI-based Sensing. Since the CSI is computed at
the physical layer (PHY), it is not readily available with off-the-shelf
etwork interface cards (NICs). Although CSI can be extracted with
DR implementations, which only support up to 40 MHz of bandwidth,
eing only IEEE 802.11 a/g/p/n compliant [12,50]. Moreover, SDRs
re costly specialized hardware that may be unavailable in real-life
ituations and require expert knowledge to be used. To overcome such
imitations, in recent years, researchers have developed some CSI ex-
raction tools that run on commercial Wi-Fi NICs. Two of them, namely
inux CSI [6] and Atheros CSI [7], target IEEE 802.11n compliant
ICs (up to 40 MHz bandwidth). The third one, Nexmon CSI [8],
llows extracting the CFR from some IEEE 802.11ac compliant devices,
upporting bandwidths up to 80 MHz. The most recent one, AX CSI [10]
s designed for IEEE 802.11ax devices and provides CFR measurements
lso on 160 MHz bandwidth channels. These tools, however, need
on-trivial firmware modifications of the NICs. Moreover, they do not
rovide support for estimating the channel on MU-MIMO channels.
oth when the CSI extractor tool is implemented on one receiving Wi-
i device or on another monitor device, only the MIMO links between

the transmitter and the CSI collector is monitored, i.e., only SU-MIMO
mode is supported. This is a limitation of CSI-based systems as MU-
MIMO systems can provide way richer information than SU-MIMO ones
as they capture the correlation of the propagated signal from different
STAs relative to the sensed subject. As a last consideration, Wang
et al. [51] recently pointed out the importance of the placement of the
CSI extractor device. Specifically, they showed that accurate placement
of the sensing devices can enhance the sensing coverage by mitigating
severe interference. Non-calibrated placement of the sensing devices
can severely hamper the sensing quality.
 q

3 
Recent BFI-based Sensing Approaches. BFI is gaining momentum
in the research community as a proxy to the CSI as it provides spa-
tially diverse rich channel information from commercial Wi-Fi devices

ithout the need for any firmware modification or direct access to the
hardware. In this context, while the CSI is nowadays well recognized to
be valuable for sensing purposes, some recent research work has also
onsidered BFI for sensing showing its high potentialities.

Jiang et al. investigate the Wi-Fi sensing performance in terms of
angle of arrival (AoA), Doppler, and range estimation based on the
BFI for two different approaches to obtain the beamforming matrix,
i.e., performing eigenvalue decomposition (EVD) (i) on the channel
autocorrelation matrix or (ii) on the conjugate transpose of the channel
autocorrelation matrix [57]. The results show that the first approach
retains only the Doppler and time delay differences of different paths,
whereas the second scheme retains absolute Doppler and delay in-
formation. Kondo et al. evaluate the impact of uni-directional (DL-
MU-MIMO) and bi-directional (DL and UL-MU-MIMO) beamforming
on Wi-Fi sensing performance through the BFI reconstructed from
BFAs [52]. The results demonstrate that the framework based on bi-
directional beamforming achieves better sensing performance in terms
of angle of departure (AoD). The same authors leverage the BFI for
respiratory rate estimation in [53] achieving an estimation error lower
than 3.2 breaths/minute. Finally, Wu et al. proposed a BFI-based
wireless sensing system for device localization, passive tracking, and
sign language recognition [54]. Their proposed system achieves a
localization median error of 0.72 m, passive tracking median error
of 0.67–0.95 m, and sign language recognition accuracy of 92.5%–
97.14%. We stress that all these sensing systems leverage the BFI
matrices reconstructed from the compressed BFAs transmitted over
the air. This incurs additional pre-processing stages that increase the
system latency and computational burden of the sensing system. On
the contrary, BeamSense is based on the compressed BFAs which
are directly captured from ongoing transmissions and do not need any
pre-processing. Another advantage of using BFAs instead of the BFI
is the dimensionality of the data. Being BFAs a compressed version
of the BFI, their processing requires neural networks with a smaller
input dimensionality and, in turn, with a smaller number of learnable
parameters, with respect to processing BFI data. We included some
preliminary results about this methodology in [58] where we present
Wi-BFI [58], an open-source tool to capture BFAs packets from any
ongoing Wi-Fi transmissions, decode the BFAs and reconstruct BFI in
both real-time and from captured traces. Note that [58] focuses on the
BFAs extraction and reconstruction of BFI with only some preliminary
results about sensing capabilities with BFAs. In this current work, we
instead deeply analyze the use of BFAs for sensing, including a novel
FSL-based algorithm that enhances the generalization capabilities of the
sensing system.

Table 1 provides a comprehensive comparison between the pro-
osed BFAs-based sensing approach (BeamSense) and other SOTA
SI and BFI-based methods. It provides a comprehensive summary
f BeamSense and other SOTA approaches, evaluating them based
n the technology utilized, operating bandwidth, sensing primitive
onsidered, firmware modification requirements, sensing applications,
umber of classes, sensing accuracy, and domain generalization capa-
ilities. The comparison highlights the advantages of BeamSense with
espect to other sensing approaches. Specifically, BeamSense does
ot require firmware modifications and allows achieving high accu-
acy across multiple tasks (96%–99%), offering superior generalization
erformance (90%–95%) across different scenarios. These factors make
eamSense the preferred choice for practical applications where ease
f integration and robustness to domain shifts are critical.
Advantages of BeamSense over CSI-based sensing approaches.

ur approach overcomes the limitations of traditional CSI-based meth-
ds by leveraging the MU-MIMO compressed beamforming feedback,
hich is transmitted as part of the channel sounding procedure stan-
ardized in IEEE 802.11. Unlike CSI-based approaches, which re-
uire firmware modifications to extract CSI data, our system utilizes
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Table 1
Overview of the main characteristics of BeamSense and state-of-the-art approaches.

Model name Technology
considered

Considered
bandwidth
(MHz)

Sensing
primitive

Firmware
modification

Sensing applications No. of
classes

Sensing
accuracy (%)

Domain
generalization
accuracy

BeamSense
(proposed)

IEEE
802.11 ac

80 MHz BFAs No Activity classification
and gesture recognition

20 96–99 90–95

Bi-directional
BFM [52]

IEEE
802.11ax

80 MHz BFI (EVD
on autocor-
relation
matrix)

No Human localization and
AoD estimation

N/A 95–98 92–96

Respiratory rate
estimation [53]

IEEE
802.11ax

80 MHz BFI No Respiratory rate
estimation

N/A Error <3.5
breaths/minute

N/A

BFI-based
sensing [54]

IEEE
802.11ax

80 MHz BFI No Device localization,
passive tracking, and
sign language
recognition

20 92.5–97.14 Localization
error:
0.3–0.72 m,
Tracking error:
0.67–0.95 m

SignFi [55] IEEE
802.11n

40 MHz CSI Yes Sign gesture
classification

276 94.81–98.91 86.66

WiAR [48] IEEE
802.11n

40 MHz CSI Yes Human activity
recognition

16 80–95 80-90

OneFi [44] IEEE
802.11n

40 MHz CSI Yes Human gesture
recognition via
one-shot learning

40 84.2–98.8 75–91

Wi-Transfer [56] IEEE
802.11n/ac

80 MHz CSI Yes Transfer learning-based
sensing

6 88–99 85–96

Widar 3.0 [43] IEEE
802.11n

40 MHz CSI Yes Gesture recognition via
body velocity profile
(BVP)

15 92.7 82.6–92.4

ReWiS [12] IEEE
802.11ac

80 MHz CSI Yes Activity recognition via
multi-receiver CSI
learning

4 98–100 90–100

SHARP [13] IEEE
802.11ac

80 MHz CSI Yes Human activity
recognition via
micro-Doppler

7 >95 90–95
B

standard-compliant 802.11 ac/ax devices to collect compressed beam-
orming feedback packets. This eliminates the need for specialized
ardware or infrastructure, making our system more practical for
eployment compared to CSI-based strategies. Moreover, BFAs can be
aptured from anywhere within the network without any direct access

to the sensing devices, i.e., the devices estimating the wireless channel.
he device collecting the beamforming feedback (monitor device)
an remotely obtain channel information of the links between the
P and multiple STAs by simultaneously capturing the beamforming
ackets transmitted unencrypted over the air at the end of the channel

sounding procedure. Hence, as presented in Fig. 2(a), BeamSense can
be deployed directly at the edge server where the sensing application
is deployed, thus reducing the channel airtime overhead for sensing
data transmission and, in turn, the overall system latency. Contrarily,
traditional CSI-based methods require direct access to the device esti-
mating the channel as the firmware of the devices needs to be modified
to enable CSI extraction. Moreover, the extracted CSI needs to be fed
back to the edge server as presented in Fig. 2(b), introducing airtime
overhead for sensing data transmission. This overhead may lead to a
degradation of communication performance.

3. The BeamSense Wi-Fi sensing system

Fig. 3 shows a high-level overview of BeamSense, which leverages
the channel estimation mechanism standardized in IEEE 802.11 to
sound the physical environment. The channel estimation is performed
on the STAs (beamformees) and is reported to the AP (beamformer)
that uses it to properly beamform MU-MIMO transmissions. The report
s referred to as the BFI and is transmitted over the air in clear text
n the form of BFAs frames. Since the AP continuously triggers the
hannel estimation procedure on the connected STAs, the BFAs contains
4 
Fig. 3. The BeamSense Wi-Fi sensing system.

very rich, reliable, and spatially diverse information. Moreover, the BFAs
from multiple STAs can be collected with a single capture by the AP or any
other Wi-Fi-compliant device, thus reducing the system complexity.

BeamSense Technical Challenges. BeamSense is a completely
novel way to perform Wi-Fi sensing. While previous work in the lit-
erature deal with the well-known CSI data, we instead consider the

FAs as a sensing primitive. We stress that BFAs represents a com-
pletely new type of data. While CSI consists of complex I/Q-values,
BFAs are expressed in terms of rotational angles of the compressed
matrices. In this respect, the first challenge we need to address is the
design and implementation of a novel tool to extract the BFAs data
embedded within Wi-Fi frames transmitted from the beamformees to
the beamformer as part of the channel-sounding procedure. On top
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of that, the second challenge concerns the implementation of a new
ata processing pipeline for the new data type that effectively performs

activity classification based on BFAs data and provides environment
adaptation features. The third challenge to be addressed is the setup
of an extensive experimental testbed to implement and assess the
performance of the new Wi-Fi sensing approach in a real-world scenario
with commercial Wi-Fi devices.

In the following, we thoroughly detail the BeamSense sensing
ystem. We use the superscripts 𝑇 and † to denote the transpose and
he complex conjugate transpose (i.e., the Hermitian). We define with
𝐂 the matrix containing the phases of the complex-valued matrix 𝐂.

Moreover, diag(𝑐1,… , 𝑐𝑗 ) indicates the diagonal matrix with elements
(𝑐1,… , 𝑐𝑗 ) on the main diagonal. The (𝑐1, 𝑐2) entry of matrix 𝐂 is defined
by [𝐂]𝑐1 ,𝑐2 , while I𝑐 refers to an identity matrix of size 𝑐 × 𝑐 and I𝑐×𝑑 is
a 𝑐 × 𝑑 generalized identity matrix.

3.1. BeamSense: A walkthrough

The BeamSense sensing system entails eight steps, as depicted in
Fig. 3. The process stems from the way beamforming is implemented
in IEEE 802.11 networks. Specifically, the beamformer (AP) uses a
matrix 𝐖 of pre-coding weights – called steering matrix – to linearly
combine the signals to be simultaneously transmitted to the different
beamformees (STAs). The steering matrix is derived from the CFR
matrices 𝐇 estimated by each of the beamformee and that describe
ow the environment modifies the irradiated signals in their path to
he receivers. The estimation process is called channel sounding and is
riggered by the AP which periodically broadcasts a null data packet
NDP) (step 1 in Fig. 3) that contains sequences of bits – named
ong training fields (LTFs) – the decoded version of which is known
y the beamformees. Since its purpose is to sound the channel, the
DP is not beamformed by the AP. This is particularly advantageous for
ensing purposes, since the resulting CFR estimation will not be affected
y inter-stream or inter-user interference. The LTFs are transmitted
ver the different beamformer antennas in subsequent time slots, thus
llowing each beamformee to estimate the CFR of the links between
ts receiving antennas and the beamformer transmitting antennas. The
TFs are modulated – as the data fields – through OFDM by dividing
he signal bandwidth into 𝐾 partially overlapping and orthogonal
ub-channels spaced apart by 1∕𝑇 . The input bits are grouped into
FDM symbols, 𝐚 = [𝑎−𝐾∕2,… , 𝑎𝐾∕2−1], where 𝑎𝑘 is named OFDM sam-
le. These 𝐾 OFDM samples are digitally modulated and transmitted
hrough the 𝐾 OFDM sub-channels in a parallel fashion thus occupying
he channel for 𝑇 seconds. The transmitted LTF signal is

t x(𝑡) = 𝑒𝑗2𝜋 𝑓𝑐 𝑡
𝐾∕2−1
∑

𝑘=−𝐾∕2
𝑎𝑘𝑒

𝑗2𝜋 𝑘𝑡∕𝑇 , (1)

here 𝑓𝑐 is the carrier frequency. The NDP is received and decoded by
ach STA (step 2) to estimate the CFR 𝐇. The different LTFs are used to
stimate the channel over each pair of transmitting (TX) and receiving
RX) antennas, for every OFDM sub-channel. This generates a 𝐾×𝑀×𝑁
atrix 𝐇 for each beamformee, where 𝑀 and 𝑁 are respectively the
umbers of TX and RX antennas. We refer the reader to Section 2
or additional details about the CFR. Next, the CFR is compressed –
o reduce the channel overhead – and fed back to the beamformer.
sing 𝐇𝑘 to identify the 𝑀 × 𝑁 sub-matrix of 𝐇 containing the CFR

amples related to sub-channel 𝑘, the compressed beamforming feedback
s obtained as follows ([59], Chapter 13). First, 𝐇𝑘 is decomposed
hrough singular value decomposition (SVD) as
𝑇
𝑘 = 𝐔𝑘𝐒𝑘𝐙

†
𝑘, (2)

here 𝐔𝑘 and 𝐙𝑘 are, respectively, 𝑁 ×𝑁 and 𝑀 ×𝑀 unitary matrices,
hile the singular values are collected in the 𝑁×𝑀 diagonal matrix 𝐒𝑘.
sing this decomposition, the complex-valued beamforming matrix 𝐕𝑘

s defined by collecting the first 𝑁SS ≤ 𝑁 columns of 𝐙𝑘. Such a matrix
s used by the beamformer to compute the pre-coding weights for the
 o

5 
Algorithm 1: 𝐕𝑘 matrix decomposition

Require: 𝐕𝑘;
𝐃̃𝑘 = diag(𝑒𝑗∠[𝐕𝑘]𝑀 ,1 ,… , 𝑒𝑗∠[𝐕𝑘]𝑀 ,𝑁SS ) ;
𝛀𝑘 = 𝐕𝑘𝐃̃

†
𝑘;

for 𝑖← 1 to min(𝑁SS, 𝑀 − 1) do
𝜙𝑘,𝓁,𝑖 = ∠ [

𝛀𝑘
]

𝓁,𝑖 with 𝓁 = 𝑖,… , 𝑀 − 1;
compute 𝐃𝑘,𝑖 through Eq. (3);
𝛀𝑘 ← 𝐃†

𝑘,𝑖𝛀𝑘;
for 𝓁 ← 𝑖 + 1 to 𝑀 do

𝜓𝑘,𝓁,𝑖 = ar ccos
(

[𝛀𝑘]𝑖,𝑖
√

[𝛀𝑘]2𝑖,𝑖+[𝛀𝑘]
2
𝓁,𝑖

)

;

compute 𝐆𝑘,𝓁,𝑖 through Eq. (4);
𝛀𝑘 ← 𝐆𝑘,𝓁,𝑖𝛀𝑘;

𝑁SS spatial streams directed to the beamformee. Hence, 𝐕𝑘 is converted
into polar coordinates as detailed in Algorithm 1 to avoid transmitting
the complete matrix. The output is matrices 𝐃𝑘,𝑖 and 𝐆𝑘,𝓁,𝑖, defined as

𝐃𝑘,𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I𝑖−1 0 … 0

0 𝑒𝑗 𝜙𝑘,𝑖,𝑖 0 …
⋮

⋮
0 ⋱ 0

⋮ 0 𝑒𝑗 𝜙𝑘,𝑀−1,𝑖 0

0 … 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

𝐆𝑘,𝓁,𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I𝑖−1 0 … 0

0 cos𝜓𝑘,𝓁,𝑖 0 sin𝜓𝑘,𝓁,𝑖 ⋮

⋮
0 I𝓁−𝑖−1 0

− sin𝜓𝑘,𝓁,𝑖 0 cos𝜓𝑘,𝓁,𝑖 0

0 … 0 I𝑀−𝓁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

that allow rewriting 𝐕𝑘 as 𝐕𝑘 = 𝐕̃𝑘𝐃̃𝑘, with

̃
𝑘 =

min(𝑁SS ,𝑀−1)
∏

𝑖=1

(

𝐃𝑘,𝑖
𝑀
∏

𝑙=𝑖+1
𝐆𝑇
𝑘,𝑙 ,𝑖

)

I𝑀×𝑁SS
, (5)

here the products represent matrix multiplications. In the 𝐕̃𝑘 matrix,
he last row – i.e., the feedback for the 𝑀th transmitting antenna
 consists of non-negative real numbers by construction. Using this
ransformation, the beamformee is only required to transmit the 𝜙
nd 𝜓 angles to the beamformer as they allow reconstructing 𝐕̃𝑘
recisely. Moreover, it has been proved (see [59], Chapter 13) that the
eamforming performance is equivalent at the beamformee when using
𝑘 or 𝐕̃𝑘 to construct the steering matrix 𝐖. In turn, the feedback for
̃
𝑘 is not fed back to the beamformer. The angles are quantized using
𝜙 ∈ {7, 9} bits for 𝜙 and 𝑏𝜓 = 𝑏𝜙 − 2 bits for 𝜓 , to further reduce
he channel occupancy. The quantized values – 𝑞𝜙 = {0,… , 2𝑏𝜙 − 1} and
𝜓 = {0,… , 2𝑏𝜓 − 1} – are packed into the compressed beamforming
rame (step 3) and such BFAs are transmitted to the AP (step 4) in clear
ext. Each BFAs frame contains 𝐴 number of angles for each of the 𝐾
FDM sub-channels for a total of (𝐾 ⋅𝐴) angles each. In Fig. 4, we show
n example of how beamforming is conducted in a 3 × 2 MIMO system.
BeamSense captures the BFAs frames (step 5), and uses the

hannel estimation data to perform Wi-Fi sensing. We remark that,
ince MU-MIMO requires fine-grained channel sounding – every around
0 ms to account for user mobility, according to [60] – it is fundamental
o process the BFAs in a fast manner at the AP. For this reason, and
ince cryptography would lead to excessive delays, the angles are
urrently sent unencrypted. Therefore, the BFAs frames are exposed to
nd can be read by any device that can access the wireless channel.
pecifically, BeamSense relies on the BFAs transmitted by all the
eamformees in the environment and captured during a time window

f 𝑊 seconds to reliably estimate the activity being performed by
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Fig. 4. Example of 3 × 2 MIMO system. 𝑠1 , 𝑠2 and 𝑟1 , 𝑟2 are respectively the transmitted
nd received signals. The symbol 𝐖 indicates the steering matrix, while 𝐇 is the CFR.

Fig. 5. BFAs data processing. The processing is applied to each observation window
of 𝑊 seconds.

a human moving within the propagation environment. This is done
y using the BFAs frames collected within the window as input for
 learning-based algorithm (detailed in Section 3.2). Note that, as
eamSense leverages ongoing MU-MIMO transmissions, there is no
uarantee that the same number of BFAs frames are collected within
 specific time interval of 𝑊 seconds. This is related to the fact that
e have no control over when the beamformer triggers the channel

ounding procedure that generates BFAs data. Therefore, as the neural
etwork-based classification algorithm requires the input to be of a
ixed dimension, we need to determine a fixed-size input that represents
he BFAs frames captured during the time window. The processing is
pplied just after having collected the data on the wireless channel
gray box in Fig. 3) and is summarized in Fig. 5. Specifically, we
onsider the average number 𝑆 of BFAs frames counted (at training
ime) in each window during an activity recording. Windows having
ess than 𝑆 frames are padded with BFAs frames containing zero-valued
ngles while packets exceeding such threshold are discarded. Hence,
he 𝐾 × 𝐴 BFI angles contained in each packet are extracted and the
inal tensor is obtained by aggregating the 𝑆 ×𝐾 ×𝐴 angles for all the

MU-MIMO users for which the BFAs data have been captured in the
bservation window. Note that even if it would be possible to define
earning algorithms that accept input of different sizes, this would
ead to an increase in the complexity of the approach, both from the
raining and inference perspective. Therefore, to keep the model simple
or implementation on memory- and battery-constrained devices, we
ecided to follow a fixed-input approach.

To obtain the training data, the 𝑆 ×𝐾 ×𝐴×𝑈 tensors derived from
he BFAs farmes captured during the data collection phase are stored in
 dataset, together with their associated activity and/or phenomenon,
 l

6 
nd a timestamp (step 6 in Fig. 3). This phase can be performed
ffline by sensing application vendors without requiring the users’
ooperation. The trained model (step 7) is then used for online sensing
step 8).

The BFAs are transmitted unencrypted in accordance with the IEEE
02.11 standards. Specifically, the standards specify that BFAs should
e fed back using ‘‘Not Robust Action Frames’’, which are transmitted
nencrypted. This is linked with the need to receive channel feedback
ith low latency to enable MIMO transmissions. Indeed, given the
ariability of the wireless channel, BFAs should be transmitted every
bout 10 ms and promptly used for precoding MIMO transmissions. In
his context, encryption would make the procedure less efficient and
ay lead to a degradation of the communication performance.

Note that BFAs do not contain any sensitive information about
sers and their data. Indeed, BFAs are a compressed and quantized
epresentation of the CSI estimated for the links between the AP and
he STAs in the considered MU-MIMO network. Such angles are used
or precoding purposes to enable the simultaneous transmission of
ultiple data streams to the STAs. Even if the choice to transmit

hem unencrypted is prone to adversarial attacks [61], exploring secure
ransmission methods for beamforming feedback, such as encryption
r other physical layer security techniques, is outside the scope of

this work. Our primary focus is on demonstrating the feasibility and
effectiveness of using BFAs for wireless sensing in compliance with
existing standards, which require BFAs to be fed back unencrypted.

The timing of the channel sounding procedure, which generates
BFAs samples, is a critical factor influencing the performance of sensing
systems that rely on this information, such as BeamSense. As men-
tioned in [60], channel sounding should be performed every 10 ms,
resulting in about 100 BFAs frames per second. This rate ensures that
the AP keeps the precoding aligned with the channel variations, which
are encoded in the BFAs estimated at the STAs and promptly fed back
to the AP. This rate is also enough to provide adequate performance
in most sensing applications. However, it is important to recognize
hat increasing the frequency of BFAs frames would result in finer
ranularity of the CFR. With more frequent updates, the sensing system
ould have access to more detailed and precise information about

he channel characteristics. The increased granularity would enhance
he system’s sensing capabilities, allowing it to track rapid and subtle
ariations in the environment more effectively. As a result, higher
FAs frame rates could lead to improved sensing performance, partic-
larly in dynamic environments where the channel conditions change
requently. This important aspect will be addressed in the upcoming
EEE 802.11bf standard that will define proper strategies to integrate
ommunication and sensing services. In particular, new procedures
ill be defined to enable the collection of channel information even
hen no data is transmitted over the wireless channel, and, in turn,
o channel sounding is performed. This new feature will enable the
idespread adoption of BFAs-based sensing techniques such as Beam-
ense. Importantly, BeamSense will be directly applicable to new
i-Fi standards, making it a strong candidate for integrated sensing

nd communications applications.

.2. The FAMReS classification algorithm

Existing research in CSI-based sensing has exposed that designing
lassifiers that are robust to changing the subject performing the ac-
ivity (i.e., different people) and the environment where the activity
s performed (i.e., different rooms) is very challenging [12,13,43,44].
n the other hand, it is hardly feasible to collect a large amount of
ata for all possible scenarios. To address this key issue, we propose a
eep learning (DL)-based algorithm for BFI-based activity classification
alled Fast and Adaptive Micro Reptile Sensing (FAMReS), which is a
ew-shot learning (FSL) algorithm based on Reptile [62] which needs a
imited set of new input data to generalize to unseen environments.
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FSL is a DL technique that leverages only small amounts of ad-
itional data to adapt to classes that are unseen at training time.

Specifically, in K-way-N-shot FSL, the model is trained on a set of
mini-batches of data sampled from only K different classes (ways)
and containing 𝑁 samples (shots) of each class. The key idea is that
by feeding less data, the model is spurred to rapidly adapt to new
tasks. This unique property makes FSL a strong candidate to tackle
the diversity of environments. The key reason for using FSL for Wi-Fi
sensing is that we aim at creating an almost plug-and-play framework
for the end-users. In particular, it would be infeasible to account for
ll the specific end-user scenarios – in terms of activities, people, and
nvironment diversity – during the algorithm design before its release

to the public. For these reasons, our BeamSense algorithm comes
with a base set of 20 different activities on 3 standard environments
on which it has been trained and, for generalization, is empowered

ith few-shot learning capabilities to quickly adapt to new domains
environments/subjects).

FSL can be categorized into embedding learning [63,64], and meta-
earning [62,65], among others. Specifically, Reptile is a gradient-based
eta-learning algorithm that learns the model parameter initialization

or rapid fine-tuning. The key idea is that there are some common
eatures between different tasks that can be learned through meta-
earning. Therefore, the model can be fine-tuned on a new task faster
ith the meta-learned weights instead of training it from the beginning.
o find the initialization weights 𝜃∗, Reptile minimizes the expectation
f the loss function 𝐿𝜏 with respect to the different tasks 𝜏, i.e.,
∗ = min

𝜃
E𝜏

{

𝐿𝜏 [𝑓 (𝑥, 𝑦|𝜃)]} , (6)

here 𝑓 (𝑥, 𝑦|𝜃) is the model functional approximation between input
ata 𝑥 and output 𝑦 obtained with parameters 𝜃. This is equiva-
ent to finding the 𝜃∗ that satisfies E𝜏

{

∇𝜃
(

𝐿𝜏 [𝑓 (𝑥, 𝑦|𝜃)])} = 0 via,
.g., stochastic gradient descent (SGD). SGD finds 𝜃∗ through an iter-
tive procedure, by subsequently updating the value of 𝜃 with a new
alue 𝜃′ based on the gradient information:

𝜃′ = 𝜃 − 𝛽 1
𝑛

𝑛
∑

𝜏=1

(

1
𝑚

𝑚
∑

𝑖=1
∇𝜃

(

𝐿𝜏
[

𝑓
(

𝑥𝑖, 𝑦𝑖|𝜃
)])

)

(7)

= 𝜃 − 𝛽 1
𝑛

𝑛
∑

𝜏=1

(

𝜃 − 𝜃
)

, (8)

where 𝑛 and 𝑚 denote the number of tasks and sampled data points
of each task, respectively, 𝛽 is a scalar denoting the step size, and
𝜃 = 𝜃 − 𝛼 1

𝑚
∑𝑚
𝑖=1 ∇𝜃

(

𝐿𝜏
[

𝑓
(

𝑥𝑖, 𝑦𝑖|𝜃
)])

are the updated weights using
sampled data from 𝜏, where 𝛼 denotes the learning rate. 𝜃 can be

asily obtained using any deep learning API such as TensorFlow and
yTorch. The meta-learning proceeds through the following steps: (i)
ample 𝑛 new tasks {𝜏} with 𝑚 data of each task (for K-way-N-shot, 𝑚
s the product of K and N); (ii) compute 𝜃; (iii) update 𝜃 with Eq. (8);

(iv) iterate (ii) and (iii) until the loss function stops decreasing. Fig. 6
hows how FSL is implemented through the Reptile algorithm: once

obtained the initialization weights 𝜃∗ through meta-learning, the model
is fine-tuned on each different task.

3.2.1. FAMReS algorithm
The original purpose of Reptile is to extract meta-features from a

large dataset so that it can be quickly fine-turned when a new task is
ampled from the given dataset. However, Reptile requires the inference
nd meta-learning data to be sampled from the same dataset. Such a
ataset should contain as many classes as possible so that the meta-
earner can extract the general characteristics and fine-tune a task with
ewer classes. Since this is unfeasible in BFI-based sensing, we find
ome common ground between meta-learning and general DL. The aim
f learning is trying to approach the ground truth between different
ampled data, while meta-learning is to find shared features between
arious tasks. Thus, if we consider each batch of training data as a new
ask in meta-learning, the learning problem can be converted into a meta-
learning problem. Formally, we aim to find a set of parameters 𝜃∗ that
7 
Fig. 6. Example of Few-Shot Learning.

minimize the loss function 𝐿 on training data 𝑥𝑖 and 𝑦𝑖:
𝜃∗ = min

𝜃
E𝑖

{

𝐿
[

𝑓
(

𝑥𝑖, 𝑦𝑖|𝜃
)]}

. (9)

By plugging the derivative E𝑖
{

∇𝜃
(

𝐿
[

𝑓
(

𝑥𝑖, 𝑦𝑖|𝜃
)])}

to the SGD opti-
mizer, the optimization problem can be solved as

𝜃 = 𝜃 − 𝛼 1
𝑚

𝑚
∑

𝑖=1
∇𝜃

(

𝐿
[

𝑓
(

𝑥𝑖, 𝑦𝑖|𝜃
)])

. (10)

By comparing Eq. (7) with (10), we can easily find that if we set
𝑛 = 1 in Eq. (7), the only difference between these two equations is a
constant scalar. Based on this observation, we note that Reptile learns
common ground from different mini-batch of data. The meta-learning
rate 𝛽, which is usually a scalar less than 1, is to adjust the step size
of the learning, making it less likely to overfit the mini-batch data.

his meta-learning process can be regarded as a warm-up phase before
earning, which makes the parameters 𝜃 closer to the ground truth in
he hyperspace than random initial weights.

Inspired by this idea, FAMReS is divided into two stages: (i) meta-
earning stage; and (ii) micro-learning stage. In stage (i), the model
tilizes a small portion of data to learn the shared features. In stage
ii), the same micro dataset is used for training. The complete FAMReS
orkflow is reported in Algorithm 2. We stress the difference be-
ween the original Reptile and FAMReS: we only use a small portion
f data in meta-learning and micro-learning and use other unseen
ata for testing. On the contrary, Reptile uses the same dataset for
oth learning and inference. Although we have only done experiments
ffline in this work, FAMReS is a strong candidate for online learning.
he algorithm can run the meta-learning phase while collecting new
ata. Once there is enough data, it can move on to the next stage.
herefore, we define a time variable 𝛿 in experiments to simulate
he real-time implementation. We use the data collected within the 𝛿
ime window for learning and the other for inference. FAMReS is an
mpirical risk minimizer that can be unstable when using small values
or 𝛿, depending on the distribution of training data. Meta-learning on
he micro dataset can only bring the initial parameters closer to the
round truth point in the hyperspace, but the final parameters still
epend on the training set. Thanks to the high stability of the BFI data,
e can always get a reasonable accuracy in the experiments unless 𝛿 is

xtremely small.

Algorithm 2: The FAMReS Algorithm
Require: step size 𝛽, micro dataset D;
Initialize: a set of parameters 𝜃;
for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, 2, ... do

sample k points of data from D ; /*stage i*/
compute 𝜃 using the SGD formulation;
update the parameters: 𝜃 ← 𝜃 + 𝛽

(

𝜃 − 𝜃
)

;
for 𝑒𝑝𝑜𝑐 ℎ = 1, 2, ... do

update 𝜃 running SGD on D; /*stage ii*/
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Fig. 7. Learning-based activity classifier.

.2.2. Learning architecture
In the last decade, CNNs have achieved tremendous success in

computer vision [66–68]. The convolution layer, the basis of CNNs,
can efficiently extract features by performing convolution operations
on the elements of the input data. Given that in this article our aim is
to investigate the effectiveness of BFI-based sensing as compared to CSI-
ased sensing, we propose to use a VGG-based [67] CNN architecture
s the human activity classifier. The network is depicted in Fig. 7 and
ntails stacking three convolutional blocks (conv-block) and a max-
ooling (MaxPool) layer. Softmax is applied to the flattened output to
btain the probability distribution over the activity labels.

The conv-block is a stack of two convolution two-dimensional
2D) layers. Following the design of VGG [67], each convolution layer
as a kernel size of 3 × 3 and a step size of 1. To introduce non-linearity
n the model, we apply a rectified linear units (ReLU) activation func-
ion at the end of each conv-block. Batch normalization is also used
n conv-blocks to avoid gradient explosion or vanishing. Our VGG-

based CNN consists of three conv-blocks with 128, 64 and 32 filters,
espectively. We choose a descending order of filters to reduce the
odel size since features in lower layers are usually sparser and thus

equire extracting more activation maps to be properly captured.

. Performance evaluation

.1. Experimental setup and data collection

We collected experimental data in three distinct indoor environ-
ents: a kitchen, a living room, and a classroom, as depicted in

Fig. 8. These environments were selected to capture diverse real-
world settings with varying levels of furniture, obstacles, and layout
onfigurations that influence wireless signal propagation. Six human
ubjects participated in the experiments, performing twenty different
ctivities: jogging, clapping, push forward, boxing, writing, brushing teeth,
otating, standing, eating, reading a book, waiving, walking, browsing phone,
drinking, hands-up-down, phone call, side bends, check the wrist (watch),
washing hands, and browsing laptop. The activities were chosen to rep-
resent a broad range of human motions, including both stationary and
dynamic actions, to test the system’s ability to differentiate between
subtle and vigorous movements. Each subject performed the activities
independently within a 2 m × 1.5 m rectangular region marked on the
loor in each environment to ensure a consistent and controlled area for
ata collection. The size of the designated region was chosen to allow
or free movement while maintaining a practical distance of 2–3 m
rom the STAs. Both BFAs and CSI data were collected for the same
uration of 300 s for each of the twenty activities for every subject
n different environments and orientations. This duration was selected
o capture sufficient data for analysis while ensuring the subjects could
omfortably perform the activities. The continuous data capture for this
uration for each activity allowed for the collection of a comprehensive

dataset enabling extensive temporal and spatial analyses.
To establish the ground truth, synchronous video streams of
the subjects performing each activity were recorded. These video

8 
Fig. 8. Sites of experimental data collection.

Fig. 9. Sample frames from the video capture.

streams were captured using fixed cameras positioned to cover the
ntire rectangular region where the subjects performed the activities,
nsuring full visibility of the subject’s movements. The video cameras
ere placed at angles that minimized occlusion and ensured clear
isibility of the subject’s entire body. The video streams were synchro-
ized with the BFI and CSI data using timestamps, ensuring precise

alignment between the recorded video streams of the activities and
the corresponding BFI and CSI frames. This synchronization ensured
hat for every captured BFI and CSI frame, the corresponding activity
ould be accurately identified and labeled, making the dataset reliable
or supervised learning models. As an example, three frames from the
aptured video streams are shown in Fig. 9.
BeamSense Network Setup and Equipment. We set up an

02.11ac MU-MIMO network operating on channel 153 with center
requency 𝑓 c = 5.77 GHz and 80 MHz bandwidth. This allows sounding

= 234 sub-channels, i.e., 256 available sub-channels on 80 MHz
hannels minus 14 control sub-channels and 8 pilots. We use one AP
beamformer) and three STAs (beamformees), as depicted in Fig. 10
n orange. The AP and the STAs are implemented through Netgear
ighthawk X4S AC2600 routers with 𝑀 = 3 and 𝑁 = 1 antennas

enabled respectively for the AP and each of the STAs. The three STAs
are served with 𝑁 ss = 1 spatial stream each and placed at three
different heights and significantly spaced from each other to form a
3 × 3 MU-MIMO system. According to the IEEE 802.11ac standard,
four beamforming feedback angles (two 𝜙 and two 𝜓) are needed to
represent each of the 3 × 1 channels between the AP and the STAs. In
our setup, the angle quantization process uses 𝑏𝜙 = 9 bits and 𝑏𝜓 = 7
bits for the feedback angles 𝜙 and 𝜓 respectively. UDP data streams
are sent from the AP to the STAs in the downlink direction to trigger
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Fig. 10. Experimental setups for data collection.

the channel sounding. The BFI frames are captured with the Wireshark
network protocol analyzer running on an off-the-shelf laptop equipped
with an Intel 9560NGW wireless-AC NIC set in monitor mode. However,
note that any IEEE 802.11ac-compliant NIC set in monitor mode could
be used for this purpose. Moreover, notice that the frame-capturing
device does not need any direct link with the AP or the STAs. The only
requirement is that the capture is performed on the wireless channel
where the Wi-Fi network is operating. From the captured frames, the
𝜙 and the 𝜓 angles are extracted for each of the STAs and used as
input to the BeamSense learning framework (see Section 3.2). Fig. 11
shows a sample taken from our dataset. We plot the magnitude of the
four collected beamforming angles for each of the 234 available sub-
channels, for ten different packets and four activities. Fig. 11 remarks
that the absolute values of the angles change quite significantly among
different activities, while do not change significantly among different
packets. This indicates that BFI-based sensing is a stable measurement
of the channel propagation environment and thus, a strong candidate
to be used within Wi-Fi sensing systems.

CSI Network Setup and Equipment. For comparative studies, CSI
data has also been collected concurrently with the BFI frame capture.
For this purpose, a Wi-Fi network consisting of an AP (referred to
as CSI AP) and three STAs (referred to as CSI monitors) has been
co-located with BeamSense network in the same environments, as
depicted in Fig. 10. The network operates on the IEEE 802.11ac channel
42, i.e., the center frequency is 𝑓𝑐 = 5.21 GHz and the bandwidth
is 80 MHz. The AP is implemented with a Netgear Nighthawk X4S
AC2600 router, while the CSI client is a PC APU2 board equipped
with an Intel 9560NGW wireless-AC NIC. For the CSI extraction, three
IEEE 802.11ac-compliant Asus RT-AC86U routers (referred to as CSI
monitors) equipped with the Nexmon CSI extraction tool [8] have been
deployed, as depicted in Fig. 10 in green. To have the same setup as
n the MU-MIMO network, the CSI AP is enabled with 𝑀 = 3 antennas
hereas the CSI monitors are set up to sense the channel through 𝑁 = 1
ntenna over 𝑁𝑠𝑠 = 1 spatial stream each. UDP packets are sent from
he CSI AP to the CSI client to trigger the channel estimation on the
hree CSI monitors.
Real-time Deployment of BeamSense. The BeamSense frame-

ork is deployed on a Linux-based workstation, configured to function
s an edge server for efficient wireless data processing. The edge server
s equipped with an Intel 9560NGW Wireless-AC network NIC, allowing
t to directly capture BFAs frames without requiring direct access to
he associated STAs or the network infrastructure. The edge server
9 
Fig. 11. BFAs for each sub-channel for four activities. Each plot shows the values of
10 different packets (superimposed lines with different colors). The 𝑥-axis reports the
indices of the sensed sub-channels. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

s positioned within the transmission range of the target network,
nsuring the passive collection of BFAs data.

For computational efficiency, the server is powered by a high-
erformance Intel Core i7-12700 processor and an RTX A4000 GPU.
hese hardware components enable fast preprocessing of the captured
FAs data and facilitate the real-time execution of the BeamSense
lassification algorithm, ensuring low-latency decision-making. Once
he BFAs frames are captured (as detailed in Section 4.1), the edge
erver utilizes our previously developed open-source tool, Wi-BFI [58],
o extract the BFAs samples for all the active STAs. The raw data is
hen processed through a multi-stage pipeline, outlined in Fig. 5, using
ython libraries such as NumPy and Pandas. The preprocessed data
s subsequently forwarded through the trained BeamSense classifier
or inference. The classification framework consists of two core com-
onents: a baseline CNN and our proposed FAMReS algorithm. Both
odels are implemented using Python’s TensorFlow library, which

upports the real-time execution required for practical deployment in
dge-based environments.

.2. Comparison between BFA and CSI -based sensing with co-located BFA
tations and CSI monitors.

In the following, all the results are obtained with a time window
ize of 0.1 s with 10 frames/sample with the data of three subjects
ombined, unless specified otherwise.

.2.1. Comparison between BFA and CSI-based sensing with co-located BFA
tations and CSI monitors

Fig. 12 shows the classification accuracy of BeamSense as com-
ared to the state-of-the-art CSI-based SignFi algorithm [55] in three

different environments. For a baseline comparison, we consider M1,
M2, & M3, and co-located ST1, ST2 & ST3 as the CSI collection device
and BFA STAs respectively. We first evaluate the performance of BFA
and CSI-based sensing using the minimalist data processing and the
CNN architecture as referenced in Figs. 5 and 7 respectively. The

accuracy of BeamSense in the kitchen, living room, and classroom is
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Fig. 12. BeamSense (BFA) vs. SignFi (CSI) performance.

Fig. 13. Conf. matrices for BeamSense and SignFi.

respectively 96%, 99%, and 95.47% whereas SignFi reaches 81.19%,
87.99%, and 84.08% of accuracy respectively, resulting in a 12.6%
accuracy decrease on average. We also show the performance of SignFi
with the processing pipeline presented in [55], which unwraps the
phase of each collected signal and then removes the phase noise by
multiple linear regression based on the unwrapped phase across all sub-
carriers and antennas. The classification accuracy improves to 91.34%,
93%, and 90% in the kitchen, living room, and classroom environ-
ments, respectively. Yet, BeamSense achieves better performance
with minimal data preprocessing.

To shed light on which classes are the hardest to classify with
SI-based sensing, Fig. 13 shows the confusion matrices obtained in
he kitchen using BeamSense and SignFi without the custom pre-
rocessing. The bottom five classes are browsing laptop (index 20),
hone call (16), hands-up-down (15), clapping (02), and boxing (04),
hich are indeed among the hardest classes to distinguish.

Fig. 14 shows the performance of BeamSense and SignFi with the
pre-processing in [55] evaluated in the kitchen as a function of the CSI
nd BFAs capture location, and the window size 𝑊 . We can see that,

for all three different locations, the performance of BeamSense and
SignFi follow the same trend for 𝑊 = 1, however, when increasing the
window size, the performance of SignFi degrades in all the locations in
comparison to the BeamSense performance. Specifically, the perfor-
mance of SignFi drops by 79.25% when we switch from 𝑊 = 0.1 to 𝑊
= 0.4 whereas the BeamSense performance fluctuates only by 2.79%.

It is worth mentioning that, BFAs are affected by phase offsets and
utomatic Gain Control (AGC) impairments as these hardware-related

mpairments percolate from CSI to the BFAs given the processing steps
etailed in Section 3.1. However, compensating such offsets would
equire reconstructing the BFI from the BFAs introducing additional
omputation and increasing the latency of the system. Given the com-
lexity of performing activity recognition through radio signals and to
void such offset-removal preprocessing step, we addressed the sensing
ask through a learning-based algorithm that is effectively able to ex-
ract meaningful features from BFAs for activity recognition, reducing
he effect of hardware-related offsets on the classification. To further
educe the effect of such offsets, the data from all the beamformees
re jointly fed to our learning-based algorithm. As BFAs from different
10 
Fig. 14. BeamSense and SignFi performance with the variation of the window size
𝑊 .

beamformees are affected by different offsets, their combination allows
the neural network to effectively extract meaningful features for the
sensing task, minimizing the effect of hardware impairments.

4.2.2. Comparison between BeamSense and CSI-based approaches for
remote sensing

For evaluating the remote sensing performance, we consider both
the BFA and CSI extraction tools do not have any direct access to
the sensing location and the STAs of the sensing environment. Thus
we place both the BFA and CSI extraction tools outside the sensing
environment– beyond the concrete wall, without any direct access to
the STAs of the sensing environment as presented in Fig. 15. The com-
parative performance analysis of BeamSense and SignFi for remote
sensing is presented in Fig. 16. Results show that the performance of
BeamSense does not hamper at all for any of the environments even
if the extraction tool is placed beyond the wall at a remote location. On
the contrary, the performance of SignFi with pre-processing decreases
by 20.80%, 19.27%, and 19.83% respectively for the kitchen, living
room, and classroom. This sudden plunge in SignFi performance is
aused by the fact that the CSI tool captures the channel between itself
nd the AP whereas the BFA tool captures the channel between AP and
ll the STAs of the network. Thus, for remote sensing, BeamSense
chieves better performance in comparison to the CSI based approaches
ncluding SignFi.

For evaluating the remote sensing performance, we consider a
situation when both the BFAs and the CSI extraction devices do not
ave any direct access to the sensing location and the STAs placed
n the sensing environment. Thus we place both the BFAs and CSI
xtraction devices outside the sensing environment – i.e., beyond a

concrete wall – without any direct access to the STAs deployed in
the sensing environment, as presented in Fig. 15. The comparative
performance analysis of BeamSense and SignFi for remote sensing
is presented in Fig. 16. The results show that the performance of
BeamSense does not hamper at all for any of the environments even
if the extraction device is placed beyond the wall at 5 m from the
AP. On the contrary, the performance of SignFi with pre-processing
decreases by 20.80%, 19.27%, and 19.83% respectively for the kitchen,
living room, and classroom. This sudden plunge in SignFi performance
is caused by the fact that the CSI extraction tool captures the channel
between the device where it is installed and the connected AP, whereas
he BFAs tool captures the channel between AP and all the STAs of
he network, independently on the device where the tool is installed.
hus, for remote sensing, BeamSense achieves higher accuracy in
omparison to the CSI based approaches including SignFi.

.2.3. Performance as a function of the spatial diversity
Fig. 17 presents the performance of BeamSense when trained with

data from a single STA and with the combined data. First, we notice
that the single STA data is almost always a very stable measurement,
with the accuracy remaining high in most of cases. However, we
notice that some STAs perform worse than others, especially ST2 in
the kitchen, and ST2 and ST3 in the classroom. Indeed, due to the
physical location of these STAs, the communication channels between
them and the AP might be in deep fade causing BeamSense to perform
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Fig. 15. Experimental setups for remote sensing test.

Fig. 16. BeamSense (BFA) vs. SignFi (CSI) performance for remote sensing.

Fig. 17. Impact of the spatial diversity of the beamformees at three different environ-
ments.

Fig. 18. Different setup/orientation of the STAs.

poorly. However, by aggregating the spatially diverse STA data, the
overall accuracy is improved by up to 43.81% in the classroom.
Given the variability of the Wi-Fi channel, considering different STA
locations imply obtaining completely different angles for the same
activity, even in the same environment, as shown in Fig. 17. To further
investigate the sensing performance as a function of the STA location,

e conduct an experiment in the kitchen entailing three different STA
ocations as depicted in Fig. 18. The first placement is referred to as
11 
Fig. 19. Impact of different orientations of beamformees in the same environment
(Kitchen).

Fig. 20. BeamSense accuracy as a function of the number of sensed sub-channels.

‘Orientation 1’ while ‘Orientation 2’ and ‘Orientation 3’ are obtained
y physically rotating each STA by 20◦ clockwise, which corresponds
o placing the STA around 2 m away from the previous location.

Fig. 19 shows the accuracy of BeamSense in the kitchen when using
data collected through each of the three setups. We notice some of
the STAs individually perform poorly in some orientations due to the
physical location of the STA. However, BeamSense performs very well
when combining all the STAs: the accuracy is 99.53%, 99.46%, and
99.23% respectively in Orientation 1, Orientation 2, and Orientation
3. Therefore,multi-STA sensing should be preferred over single-STA
sensing whenever possible.

4.2.4. Evaluation of angle and sub-channel resolution
It is known that Wi-Fi sensing performs worse when lowering the

number of sub-channel considered in the sensing process [31,69]. Ex-
tensive feature extraction or higher sampling frequency can be utilized,
at the cost of increasing the computational burden and intensifying pre-
processing steps, as well as increasing the computational complexity
f the learning process. For this reason, we investigate the trade-off

between the number of angles and sub-channels considered for sensing
and the sensing performance.

Fig. 20 shows the accuracy of BeamSense as a function of the num-
er of sub-channels utilized in the learning process. To down-sample
he sub-channels, we take the first 20, 40, 80, and 160 sub-channels,
o emulate sensing systems with smaller available bandwidths. As
xpected, the accuracy decreases by 6.31%, 3.80%, and 3.46% respec-
ively for the kitchen, living room, and classroom when we switch from
34 to 20 sub-channels. However, notice that this operation drastically
ecreases the input tensor dimension from 10 × 234 × 12 = 28 080 to
0 × 20 × 12 = 2400, implying that sub-channel resolution decreases
he computational burden by 10× while maintaining the accuracy
bove 92% in all the considered scenarios.

Fig. 21 shows BeamSense performance as a function of the number
of angles considered for sensing. STA1 is considered for angle 1, angle
2, angle 3, angle 4, and the combination of four angles, whereas STA1
and STA2 are considered for the combination of eight angles, and all
three stations are considered for the combination of 12 angles. Fig. 21
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Fig. 21. BeamSense accuracy as a function of the number of the angles considered.

Fig. 22. BeamSense accuracy as a function of the CNN filter sizes.

hows that the accuracy decreases by 1.98%, 0.16%, and 2.22% in the
itchen, living room and classroom respectively when considering a
ingle angle with respect to the combination of 12 angles. Even though
he above results show no significant variation in performance even
f the angle resolution is decreased from 12 angles combined to any
ndividual angle, we suggest aggregating at least the angles of two
patially diverse STAs to obtain a robust algorithm.

.2.5. Evaluation of CNN filter size
To further investigate the trade-off between computation complex-

ty and accuracy, we introduce a width multiplier 𝛼 ∈ (0, 1] to each
ayer of the CNN-based classifier. For a given number of input channels

and output channels 𝑍, they become 𝛼 𝐶 and 𝛼 𝑍 after applying the
multiplier. Hence, the computation complexity will be reduced by 𝛼2

roughly. Applying the width multiplier 𝛼 to BeamSense, the channel
size of each conv-block becomes 𝛼× 128, 𝛼× 64, 𝛼× 32, respectively.
ig. 22 shows how the accuracy changes when applying width mul-
iplier 𝛼 ∈ {0.07, 0.13, 0.25, 0.5, 0.75}. BeamSense accuracy, averaged
ver the three environments, is 97.22%, 98.01%, 98.62%, 98.88%,
nd 99.02%, respectively. As the CNN width decreases from 0.75
o 0.07, the accuracy drops marginally by 1.8%. This observation
ndicates that BeamSense can adapt to limited computation resources
nd latency-sensitive cases by sacrificing little accuracy.

.3. Evaluation of BeamSense with FAMReS algorithm

To address the challenge of generalization to unseen environments
nd subjects, we have proposed FAMReS in Section 3.2.1. We com-
are the performance of FAMReS with the state-of-the-art FSL algo-
ithm OneFi [44] and the transfer learning (TL) algorithm presented in
iTransfer [56] for cross-domain WiFi sensing. BeamSense utilizes

he FAMReS algorithm to effectively adapt with just 15 s of new
ata, equivalent to 150 BFAs samples from an unseen environment
r subject. This approach achieves an impressive average accuracy of

92.85% when tested in new, unseen environments and 91.87% for
previously unseen subjects. This adaptation requires only 36.37 s on
verage, on a Linux machine with Nvidia A100 GPU, demonstrating
 e

12 
its practicality for real-time applications. These results highlight the
necessity of FAMReS in enhancing the robustness and versatility of
our model, enabling it to maintain high performance across diverse
eployment scenarios.

Fig. 23(a) shows that with only 15 s of new data, FAMReS can adapt
to new environments with an average accuracy of 94.97%, 90.51%, and
93.09% when trained in the kitchen, living room, and classroom re-
spectively. On the other hand, WiTransfer achieves accuracy of 13.4%,
18.02%, and 16.52% respectively in the three different configurations.
The reason relies on the fact that the WiTransfer pre-trained model is
optimized for a specific configuration and the adaptation to new con-
figurations through transfer learning requires a considerable amount of
data to get rid of the data bias, i.e., 15 s of new data are not enough for
WiTransfer to achieve satisfactory accuracy. OneFi achieves an accu-
racy of 64.72%, 63.36%, and 63.24% respectively in new environments
when trained in the kitchen, living room, and classroom. Although the
results show that OneFi can generalize to new environments to some
extent, FAMReS performs better since it fine-tunes the whole model and
earns shared information across different tasks by using meta-learning.
n the contrary, OneFi utilizes information from one task and only fine-

unes the last layers of the neural network model that performs the
lassification. The performance of the algorithms in generalizing over
ew subjects is presented in Fig. 23(b). The results show a trend similar
o the generalization over unseen environments. FAMReS is 73.41%
ore accurate than WiTransfer and 24.81% more accurate than OneFi

n average, confirming the benefit of the few-shot learning approach
dopted in this current work. We finally evaluated the performance of
AMReS as a function of different setups as discussed in Section 4.2.3.
ig. 23(c) shows that FAMReS achieves an accuracy of 90.93%, 94.38%,
nd 93.20% when trained with data collected in setup 1, setup 2,
nd setup 3 respectively, and tested in the other setups. FAMReS

outperforms WiTransfer and OneFi by 74.88% and 27.28% on average
when used in the new unseen setups. The generalization performance
achieved when using the base CNN model (presented in Fig. 7) is also
reported in Fig. 23 for comparison. The results show that the base CNN
is unable to adapt to new environments, subjects, and orientations,
reaching an average accuracy of 6.21%.

4.4. BeamSense performance as a function of the time variable 𝛿

The time variable 𝛿 represents the duration of the period in which
FAMReS gathers BFAs samples in a new environment for fine-tuning.
Large 𝛿 values correspond to more samples used for fine-tuning while
small 𝛿 corresponds to fast adaptation but may lead to sub-optimal
performance. Hence, the quality of a generalization algorithm can be
measured by evaluating how the sensing performance varies when
changing 𝛿. The fewer samples are needed by an algorithm to gen-
eralize effectively over unseen situations, the better that approach is
for practical deployments. In this section, we compare the sensing
accuracy of BeamSense with the other considered sensing algorithms
when generalizing to new environments using different 𝛿 values. Fig. 24
illustrates the performance of the different sensing algorithms as a
function of 𝛿. The results indicate that as 𝛿 decreases from 30 s to
10 s, FAMReS experiences only a modest accuracy drop of 5.30% and
11.13% on average in unseen environments and subjects, respectively.
In contrast, WiTransfer’s performance deteriorates sharply with a short
𝛿, demonstrating that, without a meta-learning phase, transfer learning
demands more data for adaptation. While OneFi remains more stable
than WiTransfer, its accuracy drops to 52.26% and 43.92% in unseen
environments and subjects, respectively – 39% lower than FAMReS.
This confirms the advantage of FAMReS strategy, which fine-tunes the
ntire network rather than only the classifier, as done by OneFi.
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Fig. 23. Comparative analysis of BeamSense in unseen environments, subjects and
orientations.

Fig. 24. Comparative analysis of BeamSense as a function of time variable, 𝛿.

.5. BeamSense performance as a function of the number of subjects in
the training dataset

We analyze the performance of BeamSense as a function of the
number of subjects considered at training time. Fig. 25(a) shows
the classification accuracy of BeamSense with the baseline CNN
(i.e., without generalization capabilities) when trained and tested on
an increasing number of subjects (1, 3, and 6). Here, data from all the
subjects considered at the testing time were included in the training
– training and testing datasets contain BFAs from all the subjects but
re disjoint in time. The results show that the BeamSense accuracy
emains above 95% in all the cases in the different environments
evealing that the algorithm effectively learns activity-specific features

when trained with data associated with different subjects. In Fig. 25(b)
we evaluate the performance of BeamSense as a function of the
number of subjects considered at training time when using FAMReS

for generalizing over unknown subjects. The results show that the n

13 
Fig. 25. BeamSense performance as a function of number of subjects.

Fig. 26. Inference time and computational complexity of BeamSense with different
number of sub-channels.

performance improves by 20.8% and 10.3% with OneFi and FAMReS
when the considered number of subjects for training is increased from
1 to 5. This means that the higher the number of subjects in the training
set, the more the network is able to focus on subject-independent
features that provide generalizability over subjects for whom examples
of activity-related traces were not provided to the learning algorithm
during training.

4.6. Inference time, computational complexity, and energy efficiency of
BeamSense

We analyze BeamSense in terms of inference time, computational
resources, and energy efficiency. Fig. 26 presents the inference time
and the number of Floating Point Operations Per Seconds (FLOPs) for
the execution of BeamSense when using different numbers of OFDM
sub-channels for sensing.

The BeamSense model with 234 sub-channels requires 20.28 ms
and 21.20 GFLOPs, while the model with 20 sub-channels takes
15.03 ms and 0.559 GFLOPs. Note that the energy consumption of
he Wi-Fi devices remains unaffected, as BeamSense runs entirely
n the server. Indeed, BeamSense uses BFAs, which are transmitted
nencrypted from STAs to the AP in accordance with IEEE 802.11
tandards. The BFAs of the multiple STAs are recorded in a single
apture at the server without the need to modify the Wi-Fi system. Since
eamSense operates with standard Wi-Fi transmissions, no additional
nergy is consumed by the Wi-Fi devices themselves.

To study the energy efficiency of BeamSense, we evaluated the
omputational complexity of executing it. We provide an energy con-
umption estimation based on GFLOPS, which is independent of the
ardware used. For each GFLOP, we estimate an energy consumption
f approximately 0.23148 μAh. Therefore, for 234 sub-channels requir-
ng 21.20 GFLOPs, the energy consumption is approximately 0.0049
Ah, and for 20 sub-channels requiring 0.559 GFLOPs, it is about
.00013 mAh. This analysis demonstrates that BeamSense’s energy
emands are minimal and confined to the computational server, with
o additional burden placed on the Wi-Fi devices themselves.
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Fig. 27. Sensing overhead per input tensor with CSI based approach for a single
onitor for different number of sub-channels.

.7. BeamSense sensing overhead analysis

Given the limited availability of radio spectrum resources – which
hould be shared by communications and sensing services – the effi-

ciency of a sensing system is strongly linked with its sensing overhead,
i.e., the channel occupancy for sensing data transmission. To minimize
this overhead, in our system, the BFAs samples are directly acquired by
he BeamSense server given that they are transmitted unencrypted
ver the air by each STAs in the network to the AP. This eliminates
he need for edge offloading thereby minimizing channel occupancy.
n turn, BeamSense operates without occupying the wireless channel,
egardless of the number of sensing STAs, transmission bandwidth, and
IMO configurations. On the other hand, CSI-based sensing methods,

.g., OneFi and WiTransfer, introduce additional sensing overhead
s, unlike BeamSense, sensing data is captured at each STA in the
etwork. This requires direct access to the sensing device and the
ccupation of spectrum resourced for the offloading of the captured CSI
amples to the edge server. This makes the overall channel occupation
f the CSI-based approaches depend on the total number of STAs
ncluded in the sensing system. Fig. 27 reports the sensing overhead
f a CSI input tensor, i.e., 10 CSI samples as depicted in Fig. 5, for
 single STA operating on a channel with 80 MHz of bandwidth.
he results indicate that even a single input tensor captured within
 0.1-s time window occupies 110 KB when considering 234 OFDM
ub-channels, which reduces to 35 KB for 80 sub-channels. Overall, the
ensing overhead increases exponentially with CSI-based approaches
ike OneFi and WiTransfer. Therefore, employing state-of-the-art CSI-
ased approaches with a high sampling rate or more STAs included
n the sensing system inevitably saturates the network by increasing
he sensing overhead. In contrast, BeamSense entails zero-redundant
hannel occupancy, regardless of the sampling rate or the number of
ensing STAs.

.8. Evaluating BeamSense performance in smart home applications: A
ase study on human gesture recognition

To demonstrate the generalizability of BeamSense across vari-
us applications, we further evaluate its performance considering a
ifferent smart home application: human gesture recognition. In this
ask, two subjects perform gestures representing digits 0 through 9
or three minutes per gesture across three different orientations in a
onference room, as shown in Fig. 28. The data preprocessing and
lassification procedures follow the steps summarized in Fig. 5 and
etailed in Section 3.2. The results, presented in Fig. 29, illustrate
he system’s gesture recognition performance across the three orien-
ations. The gesture recognition performance across three orientations
emonstrates consistently high accuracy for all stations, with com-
ined results exceeding 98% in every case. In Orientation 1, Station
 performs best with 96.95% accuracy, while Orientation 2 shows
lightly lower but still robust accuracy across all stations, ranging from
1.54% to 93.44%. Orientation 3 yields the highest individual station
 a

14 
Fig. 28. Experimental setups of human gesture recognition. Two different subjects
perform 10 different gestures (digits 0–9) in three different orientations in the same
nvironment.

Fig. 29. Performance of human gesture recognition in three different orientations of
beamformees.

performances, particularly for Stations 2 and 3, which both exceed
97%. The consistently strong combined results highlight the system’s
ability to integrate data from multiple stations, ensuring highly accu-
rate gesture recognition across varying orientations and environments.
Figs. 30 and 31 presents the orientation and subject generalization per-
ormance of FaMReS (learning approach of BeamSense) respectively.
aMReS demonstrates a clear advantage in domain generalization per-
ormance compared to both OneFi and WiTransfer. For instance, when
rained in Orientation 1 and tested on Orientation 2, FaMReS achieves
0.00% accuracy, which is 23.32% higher than OneFi’s 72.68%, and

70.54% higher than WiTransfer’s 19.46%. Similarly, when trained in
Orientation 3 and tested in Orientation 1, FaMReS achieves 92.28%,
outperforming OneFi by 25.04% (OneFi’s accuracy being 67.24%) and

iTransfer by 72.62% (WiTransfer’s accuracy being 19.66%).
In subject generalization, FaMReS continues to show substantial

mprovements. When trained with Sub 1 and tested with Sub 2, FaMReS
chieves 93.00%, which is 20.32% higher than OneFi’s 72.68% and an
mpressive 63.54% higher than WiTransfer’s 29.46%. Similarly, when
rained with Sub 2 and tested with Sub 1, FaMReS achieves 94.94%,

outperforming OneFi by 29.17% (OneFi’s accuracy being 65.77%) and
iTransfer by 57.60% (WiTransfer’s accuracy being 37.34%). These re-

ults underscore the strong generalization capability of FaMReS, signifi-
antly surpassing both competing methods across different orientations
nd subjects.
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Fig. 30. Comparative analysis of BeamSense performance for gesture recognition
when considering new orientations not included in the training dataset.

Fig. 31. Comparative analysis of BeamSense performance for gesture recognition
when considering new subjects not included in the training dataset.

. Conclusions and remarks

In this article, we have proposed BeamSense, a novel approach
to Wi-Fi sensing based on the usage of MU-MIMO BFAs. Conversely
from CSI-based approaches, (i) the BFAs can be easily recorded by off-
the-shelf devices without MIMO capabilities and without any firmware
modification; (ii) a single frame of the BFAs capture the multiple chan-
nels between the AP and the STAs, thus achieving a much better sensing
granularity. BeamSense includes a few-shot learning (FSL)-based clas-
sification algorithm to adapt to new environments and subjects with
few additional data. We have evaluated BeamSense through an ex-
tensive data collection campaign involving three subjects performing
twenty different activities in three indoor environments. We have
compared our approach with traditional CSI-based sensing approaches
nd show that BeamSense improves the accuracy by 10% on the
verage, while our FSL-based approach improves accuracy by up to
0% when compared with SOTA domain adaptive sensing models. We
ope that this work will pave the way for additional research on BFAs
nd BFI-based Wi-Fi sensing.
15 
RediT authorship contribution statement

Khandaker Foysal Haque: Writing – review & editing, Writing
 original draft, Visualization, Validation, Software, Methodology, In-
estigation, Formal analysis, Data curation, Conceptualization. Milin
hang: Writing – original draft, Software, Investigation. Francesca
eneghello: Writing – review & editing, Validation, Supervision,

roject administration. Francesco Restuccia: Writing – review & edit-
ng, Validation, Supervision, Resources, Project administration, Fund-
ng acquisition.

cknowledgments

This work has been funded in part by the National Science Foun-
ation under grants CNS-2134973, ECCS-2229472; in part by the Air
orce Office of Scientific Research under contract number FA9550-
3-1-0261 and in part by the Office of Naval Research under award
umber N00014-23-1-2221. The U.S. Government is authorized to
eproduce and distribute reprints for Governmental purposes notwith-
tanding any copyright notation thereon. The views and conclusions
ontained herein are those of the author(s) and should not be inter-
reted as necessarily representing the official policies or endorsements,
ither expressed or implied, of U.S. Air Force, U.S. Navy or the U.S.
overnment.

ata availability

Dataset is available at – https://ieee-dataport.org/documents/datas
t-human-activity-classification-mu-mimo-bfi-and-csi.

eferences

[1] Wi-Fi Alliance, The Economic Value of Wi-Fi: A Global View (2018 and 2023),
2021, https://tinyurl.com/EconWiFi.

[2] Y. Ma, S. Arshad, S. Muniraju, E. Torkildson, E. Rantala, K. Doppler, G. Zhou,
Location- and Person-Independent Activity Recognition with WiFi, Deep Neural
Networks, and Reinforcement Learning, ACM Trans. Internet Things 2 (1) (2021).

[3] X. Wang, C. Yang, S. Mao, TensorBeat: Tensor Decomposition for Monitoring
Multiperson Breathing Beats with Commodity WiFi, ACM Trans. Intell. Syst.
Technol. 9 (1) (2017) 1–27.

[4] H. Zhu, F. Xiao, L. Sun, R. Wang, P. Yang, R-TTWD: Robust Device-Free Through-
the-Wall Detection of Moving Human with WiFi, IEEE J. Sel. Areas Commun. 35
(5) (2017) 1090–1103.

[5] Y. Ma, G. Zhou, S. Wang, WiFi Sensing with Channel State Information: A Survey,
ACM Comput. Surv. 52 (3) (2019) 1–36.

[6] D. Halperin, W. Hu, A. Sheth, D. Wetherall, Tool Release: Gathering 802.11n
Traces with Channel State Information, ACM SIGCOMM Comput. Commun. Rev.
41 (1) (2011) 53.

[7] Y. Xie, Z. Li, M. Li, Precise Power Delay Profiling with Commodity Wi-Fi, in:
Proceedings of the 21st Annual International Conference on Mobile Computing
and Networking, 2015.

[8] F. Gringoli, M. Schulz, J. Link, M. Hollick, Free Your CSI: A Channel State
Information Extraction Platform For Modern Wi-Fi Chipsets, in: Proceedings of
the 13th International Workshop on Wireless Network Testbeds, Experimental
Evaluation & Characterization, Association for Computing Machinery, New York,
NY, USA, 2019, pp. 21–28.

[9] Z. Jiang, T.H. Luan, X. Ren, D. Lv, H. Hao, J. Wang, K. Zhao, W. Xi, Y. Xu, R. Li,
Eliminating the Barriers: Demystifying Wi-Fi Baseband Design and Introducing
the PicoScenes Wi-Fi Sensing Platform, IEEE Internet Things J. 9 (6) (2022)
4476–4496.

[10] F. Gringoli, M. Cominelli, A. Blanco, J. Widmer, AX-CSI: Enabling CSI Extraction
on Commercial 802.11ax Wi-Fi Platforms, in: Proceedings of the 15th ACM Work-
shop on Wireless Network Testbeds, Experimental Evaluation & CHaracterization,
Association for Computing Machinery, New York, NY, USA, 2022, pp. 46–53.

[11] E. Aryafar, N. Anand, T. Salonidis, E.W. Knightly, Design and Experimental
Evaluation of Multi-User Beamforming in Wireless LANs, in: Proc. of the
16th Annual International Conference on Mobile Computing and Networking
(MobiCom), New York, NY, USA, 2010.

[12] N. Bahadori, J. Ashdown, F. Restuccia, ReWiS: Reliable Wi-Fi Sensing Through
Few-Shot Multi-Antenna Multi-Receiver CSI Learning, in: Proceedings of the IEEE
23rd International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), Los Alamitos, CA, USA, 2022.

https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://ieee-dataport.org/documents/dataset-human-activity-classification-mu-mimo-bfi-and-csi
https://tinyurl.com/EconWiFi
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb2
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb2
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb2
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb2
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb2
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb3
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb3
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb3
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb3
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb3
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb4
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb4
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb4
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb4
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb4
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb5
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb5
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb5
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb6
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb6
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb6
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb6
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb6
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb7
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb7
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb7
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb7
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb7
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb8
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb8
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb8
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb8
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb8
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb8
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb8
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb8
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb8
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb9
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb9
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb9
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb9
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb9
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb9
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb9
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb10
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb10
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb10
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb10
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb10
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb10
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb10
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb11
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb11
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb11
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb11
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb11
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb11
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb11
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb12
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb12
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb12
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb12
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb12
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb12
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb12


K.F. Haque et al. Computer Networks 258 (2025) 111020 
[13] F. Meneghello, D. Garlisi, N. Dal Fabbro, I. Tinnirello, M. Rossi, SHARP:
Environment and Person Independent Activity Recognition with Commodity IEEE
802.11 Access Points, IEEE Trans. Mob. Comput. (2022) 1–16.

[14] J. Liu, H. Liu, Y. Chen, Y. Wang, C. Wang, Wireless sensing for human activity:
A survey, IEEE Commun. Surv. Tutor. 22 (3) (2019) 1629–1645.

[15] C.-F. Hsieh, Y.-C. Chen, C.-Y. Hsieh, M.-L. Ku, Device-free indoor human activity
recognition using Wi-Fi RSSI: machine learning approaches, in: 2020 IEEE
International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), IEEE,
2020, pp. 1–2.

[16] W. Wang, A.X. Liu, M. Shahzad, K. Ling, S. Lu, Understanding and modeling
of wifi signal based human activity recognition, in: Proceedings of the 21st
Annual International Conference on Mobile Computing and Networking, 2015,
pp. 65–76.

[17] M. Zhang, Z. Fan, R. Shibasaki, X. Song, Domain Adversarial Graph Convolutional
Network Based on RSSI and Crowdsensing for Indoor Localization, 2022, arXiv
preprint arXiv:2204.05184.

[18] S. Depatla, Y. Mostofi, Crowd Counting through Walls Using WiFi, in: Pro-
ceedings of the IEEE International Conference on Pervasive Computing and
Communications (PerCom), Athens, Greece, 2018.

[19] P. Ssekidde, O. Steven Eyobu, D.S. Han, T.J. Oyana, Augmented CWT features
for deep learning-based indoor localization using WiFi RSSI data, Appl. Sci. 11
(4) (2021) 1806.

[20] N. Singh, S. Choe, R. Punmiya, Machine learning based indoor localization using
Wi-Fi RSSI fingerprints: an overview, IEEE Access (2021).

[21] W. Li, M.J. Bocus, C. Tang, S. Vishwakarma, R.J. Piechocki, K. Woodbridge, K.
Chetty, A Taxonomy of WiFi Sensing: CSI vs passive Wi-Fi Radar, in: 2020 IEEE
Globecom Workshops (GC Wkshps, IEEE, 2020, pp. 1–6.

[22] W. Li, R.J. Piechocki, K. Woodbridge, C. Tang, K. Chetty, Passive WiFi Radar for
Human Sensing Using a Stand-alone Access Point, IEEE Trans. Geosci. Remote
Sens. 59 (3) (2020) 1986–1998.

[23] C. Tang, W. Li, S. Vishwakarma, F. Shi, S. Julier, K. Chetty, People counting
using multistatic passive WiFi radar with a multi-input deep convolutional neural
network, in: Radar Sensor Technology XXVI, SPIE, 2022.

[24] C. Tang, W. Li, S. Vishwakarma, K. Chetty, S. Julier, K. Woodbridge, Occupancy
detection and people counting using WiFi passive radar, in: 2020 IEEE Radar
Conference (RadarConf20), IEEE, 2020, pp. 1–6.

[25] B. Huang, G. Mao, Y. Qin, Y. Wei, Pedestrian flow estimation through passive
wifi sensing, IEEE Trans. Mob. Comput. 20 (4) (2019) 1529–1542.

[26] Q. Bu, X. Ming, J. Hu, T. Zhang, J. Feng, J. Zhang, TransferSense: towards
environment independent and one-shot wifi sensing, Pers. Ubiquitous Comput.
26 (3) (2022) 555–573.

[27] B. Korany, H. Cai, Y. Mostofi, Multiple People Identification Through Walls Using
Off-the-Shelf WiFi, IEEE Internet Things J. 8 (8) (2021) 6963–6974.

[28] Y. Zeng, P.H. Pathak, P. Mohapatra, WiWho: WiFi-based Person Identification
in Smart Spaces, in: Proceedings of ACM/IEEE International Conference on
Information Processing in Sensor Networks, IPSN, IEEE, 2016, pp. 1–12.

[29] E. Soltanaghaei, R.A. Sharma, Z. Wang, A. Chittilappilly, A. Luong, E. Giler,
K. Hall, S. Elias, A. Rowe, Robust and practical WiFi human sensing using on-
device learning with a domain adaptive model, in: Proceedings of the 7th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation, 2020, pp. 150–159.

[30] S. Liu, Y. Zhao, F. Xue, B. Chen, X. Chen, DeepCount: Crowd counting with WiFi
via deep learning, 2019, arXiv preprint arXiv:1903.05316.

[31] Y. Zeng, D. Wu, J. Xiong, J. Liu, Z. Liu, D. Zhang, MultiSense: Enabling Multi-
person Respiration Sensing with Commodity WiFi, Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. (IMWUT) 4 (3) (2020) 1–29.

[32] C. Shi, T. Zhao, Y. Xie, T. Zhang, Y. Wang, X. Guo, Y. Chen, Environment-
independent In-baggage Object Identification Using WiFi Signals, in: Proceedings
of IEEE International Conference on Mobile Ad Hoc and Smart Systems, MASS,
IEEE, 2021.

[33] Y. Ren, S. Tan, L. Zhang, Z. Wang, Z. Wang, J. Yang, Liquid level sensing
using commodity wifi in a smart home environment, Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 4 (1) (2020) 1–30.

[34] Y. He, Y. Chen, Y. Hu, B. Zeng, WiFi vision: Sensing, recognition, and detection
with commodity MIMO-OFDM WiFi, IEEE Internet Things J. 7 (9) (2020)
8296–8317.

[35] Y. Ren, Z. Wang, S. Tan, Y. Chen, J. Yang, Winect: 3D Human Pose Tracking
for Free-form Activity Using Commodity WiFi, Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 5 (4) (2021) 1–29.

[36] Y. Ren, Z. Wang, S. Tan, Y. Chen, J. Yang, Tracking Free-Form Activity Using
WiFi Signals, in: Proceedings of the 27th Annual International Conference on
Mobile Computing and Networking, 2021, pp. 816–818.

[37] W. Jiang, H. Xue, C. Miao, S. Wang, S. Lin, C. Tian, S. Murali, H. Hu, Z. Sun,
L. Su, Towards 3D Human Pose Construction Using Wifi, in: Proceedings of the
26th Annual International Conference on Mobile Computing and Networking,
MobiCom ’20, Association for Computing Machinery, New York, NY, USA, 2020,
pp. 1–14.

[38] M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao, A. Torralba, D. Katabi,
Through-wall human pose estimation using radio signals, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
7356–7365.
16 
[39] M. Muaaz, A. Chelli, M.W. Gerdes, M. Pätzold, Wi-Sense: A passive human
activity recognition system using Wi-Fi and convolutional neural network and
its integration in health information systems, Ann. Telecommun. 77 (3) (2022)
163–175.

[40] Y. Ge, A. Taha, S.A. Shah, K. Dashtipour, S. Zhu, J.M. Cooper, Q. Abbasi, M.
Imran, Contactless WiFi Sensing and Monitoring for Future Healthcare-Emerging
Trends, Challenges and Opportunities, IEEE Rev. Biomed. Eng. (2022).

[41] B. Korany, C.R. Karanam, H. Cai, Y. Mostofi, Teaching RF to Sense without
RF Training Measurements, in: Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, IMWUT, Vol. 4, 2020.

[42] B. Wei, W. Hu, M. Yang, C.T. Chou, From Real to Complex: Enhancing Radio-
based Activity Recognition Using Complex-Valued CSI, ACM Trans. Sensor Netw.
15 (3) (2019) 1–32.

[43] Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, Z. Yang, Zero-
Effort Cross-Domain Gesture Recognition with Wi-Fi, in: Proceedings of the
ACM International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2019.

[44] R. Xiao, J. Liu, J. Han, K. Ren, OneFi: One-Shot Recognition for Unseen Gesture
via COTS WiFi, in: Proceedings of the ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2021, pp. 206–219.

[45] H.F.T. Ahmed, H. Ahmad, C. Aravind, Device free human gesture recognition
using Wi-Fi CSI: A survey, Eng. Appl. Artif. Intell. 87 (2020) 103281.

[46] A. Khalili, A.-H. Soliman, M. Asaduzzaman, A. Griffiths, Wi-Fi sensing:
applications and challenges, J. Eng. 2020 (3) (2020) 87–97.

[47] I. Nirmal, A. Khamis, M. Hassan, W. Hu, X. Zhu, Deep Learning for Radio-Based
Human Sensing: Recent Advances and Future Directions, IEEE Commun. Surv.
Tutor. 23 (2) (2021) 995–1019.

[48] L. Guo, L. Wang, C. Lin, J. Liu, B. Lu, J. Fang, Z. Liu, Z. Shan, J. Yang, S.
Guo, Wiar: A Public Dataset for WiFi-based Activity Recognition, IEEE Access 7
(2019) 154935–154945.

[49] S. Ding, Z. Chen, T. Zheng, J. Luo, RF-Net: A Unified Meta-Learning Frame-
work for RF-Enabled One-Shot Human Activity Recognition, in: Proceedings of
the 18th Conference on Embedded Networked Sensor Systems (SenSys 2020),
Association for Computing Machinery, New York, NY, USA, 2020, pp. 517–530.

[50] B. Bloessl, M. Segata, C. Sommer, F. Dressler, An IEEE 802.11 a/g/p OFDM
Receiver for GNU Radio, in: Proceedings of the Second Workshop on Software
Radio Implementation Forum, 2013, pp. 9–16.

[51] X. Wang, K. Niu, J. Xiong, B. Qian, Z. Yao, T. Lou, D. Zhang, Placement Matters:
Understanding the Effects of Device Placement for WiFi Sensing, Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 6 (1) (2022) 1–25.

[52] S. Kondo, S. Itahara, K. Yamashita, K. Yamamoto, Y. Koda, T. Nishio, A. Taya,
Bi-Directional Beamforming Feedback-Based Firmware-Agnostic WiFi Sensing: An
Empirical Study, IEEE Access 10 (2022) 36924–36934.

[53] T. Kanda, T. Sato, H. Awano, S. Kondo, K. Yamamoto, Respiratory Rate
Estimation Based on WiFi Frame Capture, in: 2022 IEEE 19th Annual Consumer
Communications & Networking Conference, CCNC, 2022, pp. 881–884.

[54] C. Wu, X. Huang, J. Huang, G. Xing, Enabling ubiquitous WiFi sensing with
beamforming reports, in: Proceedings of the ACM SIGCOMM 2023 Conference,
in: ACM SIGCOMM ’23, Association for Computing Machinery, New York, NY,
USA, 2023, pp. 20–32, [Online]. Available: https://doi.org/10.1145/3603269.
3604817.

[55] Y. Ma, G. Zhou, S. Wang, H. Zhao, W. Jung, SignFi: Sign language recognition
using WiFi, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2 (1) (2018)
1–21.

[56] Y. Fang, B. Sheng, H. Wang, F. Xiao, WiTransfer: A cross-scene transfer activity
recognition system using WiFi, in: Proceedings of the ACM Turing Celebration
Conference-China, 2020, pp. 59–63.

[57] Y. Jiang, X. Zhu, R. Du, Y. Lv, T.X. Han, D.X. Yang, Y. Zhang, Y. Li, Y. Gong, On
the Design of Beamforming Feedback for Wi-Fi Sensing, IEEE Wirel. Commun.
Lett. 11 (10) (2022) 2036–2040.

[58] K.F. Haque, F. Meneghello, F. Restuccia, Wi-BFI: Extracting the IEEE 802.11
beamforming feedback information from commercial Wi-Fi devices, in: Proceed-
ings of the 17th ACM Workshop on Wireless Network Testbeds, Experimental
Evaluation & Characterization, WiNTECH ’23, Association for Computing
Machinery, New York, NY, USA, 2023, pp. 104–111.

[59] E. Perahia, R. Stacey, Next Generation Wireless LANs: Throughput, Robustness,
and Reliability in 802.11n, Cambridge Univ. Press, 2008.

[60] M.S. Gast, 802.11 ac: A Survival Guide: Wi-Fi at Gigabit and Beyond, " O’Reilly
Media, Inc.", 2013.

[61] F. Meneghello, F. Restuccia, M. Rossi, WHACK: Adversarial Beamforming in MU-
MIMO Through Compressed Feedback Poisoning, IEEE Trans. Wireless Commun.
(2024).

[62] A. Nichol, J. Achiam, J. Schulman, On first-order meta-learning algorithms, 2018,
arXiv preprint arXiv:1803.02999.

[63] J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning, Adv.
Neural Inf. Process. Syst. 30 (2017).

[64] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., Matching networks for
one shot learning, Adv. Neural Inf. Process. Syst. 29 (2016).

[65] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of
deep networks, in: International Conference on Machine Learning, PMLR, 2017,
pp. 1126–1135.

http://refhub.elsevier.com/S1389-1286(24)00852-1/sb13
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb13
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb13
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb13
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb13
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb14
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb14
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb14
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb15
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb15
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb15
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb15
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb15
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb15
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb15
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb16
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb16
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb16
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb16
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb16
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb16
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb16
http://arxiv.org/abs/2204.05184
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb18
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb18
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb18
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb18
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb18
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb19
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb19
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb19
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb19
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb19
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb20
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb20
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb20
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb21
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb21
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb21
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb21
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb21
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb22
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb22
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb22
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb22
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb22
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb23
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb23
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb23
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb23
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb23
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb24
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb24
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb24
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb24
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb24
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb25
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb25
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb25
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb26
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb26
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb26
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb26
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb26
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb27
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb27
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb27
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb28
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb28
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb28
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb28
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb28
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb29
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb29
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb29
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb29
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb29
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb29
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb29
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb29
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb29
http://arxiv.org/abs/1903.05316
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb31
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb31
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb31
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb31
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb31
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb32
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb32
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb32
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb32
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb32
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb32
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb32
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb33
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb33
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb33
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb33
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb33
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb34
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb34
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb34
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb34
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb34
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb35
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb35
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb35
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb35
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb35
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb36
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb36
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb36
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb36
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb36
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb37
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb37
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb37
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb37
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb37
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb37
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb37
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb37
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb37
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb38
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb38
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb38
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb38
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb38
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb38
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb38
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb39
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb39
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb39
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb39
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb39
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb39
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb39
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb40
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb40
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb40
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb40
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb40
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb41
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb41
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb41
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb41
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb41
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb42
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb42
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb42
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb42
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb42
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb43
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb43
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb43
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb43
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb43
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb43
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb43
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb44
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb44
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb44
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb44
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb44
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb45
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb45
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb45
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb46
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb46
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb46
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb47
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb47
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb47
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb47
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb47
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb48
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb48
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb48
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb48
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb48
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb49
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb49
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb49
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb49
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb49
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb49
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb49
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb50
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb50
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb50
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb50
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb50
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb51
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb51
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb51
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb51
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb51
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb52
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb52
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb52
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb52
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb52
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb53
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb53
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb53
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb53
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb53
https://doi.org/10.1145/3603269.3604817
https://doi.org/10.1145/3603269.3604817
https://doi.org/10.1145/3603269.3604817
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb55
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb55
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb55
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb55
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb55
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb56
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb56
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb56
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb56
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb56
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb57
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb57
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb57
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb57
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb57
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb58
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb58
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb58
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb58
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb58
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb58
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb58
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb58
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb58
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb59
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb59
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb59
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb60
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb60
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb60
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb61
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb61
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb61
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb61
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb61
http://arxiv.org/abs/1803.02999
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb63
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb63
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb63
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb64
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb64
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb64
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb65
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb65
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb65
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb65
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb65


K.F. Haque et al. Computer Networks 258 (2025) 111020 
[66] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012).

[67] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

[68] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[69] S. Shi, Y. Xie, M. Li, A.X. Liu, J. Zhao, Synthesizing wider WiFi bandwidth
for respiration rate monitoring in dynamic environments, in: IEEE INFOCOM
2019-IEEE Conference on Computer Communications, IEEE, 2019, pp. 181–189.

Khandaker Foysal Haque (Graduate Student Member,
IEEE) is a Ph.D. candidate in the Department of Electrical
and Computer Engineering and a member of the Institute for
the Wireless Internet of Things at Northeastern University,
USA. He received his M.S. in Computer Engineering in
2021 from Central Michigan University, USA, and his B.S.
in Electrical and Electronic Engineering in 2016 from the
Islamic University of Technology (IUT), Bangladesh. His
research interest is in the intersection of wireless network-
ing, embedded systems, and machine learning with a focus
on integrated sensing & communication for next-generation
wireless networks. He was the recipient of the best paper
award in IEEE iSES 2020.

Milin Zhang is a Ph.D student in computer engineering
in the Department of Electrical and Computer Engineering
and a member of the Institute for the Wireless Internet
of Things at Northeastern University. He received his M.S.
in electrical engineering from Syracuse University, USA, in
2021. He received B.S. from the University of Electronic
Science and Technology of China in 2018. His area of study
is the integration of deep learning with emerging wireless
technologies.
17 
Francesca Meneghello (Member, IEEE) received the Ph.D.
degree in Information Engineering in 2022 from the Uni-
versity of Padova and is currently an Assistant Professor
at the Department of Information Engineering at the same
university. Her research interests include deep-learning ar-
chitectures and signal processing with application to remote
radio frequency sensing and wireless networks. She received
an honorary mention in the 2019 IEEE ComSoc Student
Competition. She was a recipient of the Best Student Presen-
tation Award at the IEEE Italy Section SSIE 2019, Best Ph.D.
Thesis Award from the Italian Group of Telecommunications
in 2022, and the Fulbright-Schuman Fellowship in 2023.

Francesco Restuccia (Senior Member, IEEE) is an Assistant
Professor in the Department of Electrical and Computer
Engineering, and a member of the Institute for the Wireless
Internet of Things and the Roux Institute at Northeastern
University. He received his Ph.D. in Computer Science from
Missouri University of Science and Technology in 2016, and
his B.S. and M.S. in Computer Engineering with highest
honors from the University of Pisa, Italy in 2009 and 2011,
respectively. His research interests lie in the design and
experimental evaluation of next-generation edge-assisted
data-driven wireless systems. Prof. Restuccia’s research is
funded by several grants from the US National Science
Foundation and the Department of Defense. He received
the Office of Naval Research Young Investigator Award, the
Air Force Office of Scientific Research Young Investigator
Award and the Mario Gerla Award for Young Investigators
in Computer Science, as well as best paper awards at
IEEE INFOCOM and IEEE WOWMOM. Prof. Restuccia has
published over 60 papers in top-tier venues in computer
networking, as well as co-authoring 16 U.S. patents and
three book chapters. He regularly serves as a TPC member
and reviewer for several ACM and IEEE conferences and
journals.

http://refhub.elsevier.com/S1389-1286(24)00852-1/sb66
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb66
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb66
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb68
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb68
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb68
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb68
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb68
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb69
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb69
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb69
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb69
http://refhub.elsevier.com/S1389-1286(24)00852-1/sb69

	BeamSense: Rethinking Wireless Sensing with MU-MIMO Wi-Fi Beamforming Feedback
	Introduction
	Related Work
	The BeamSense Wi-Fi Sensing System
	BeamSense: A Walkthrough
	The FAMReS Classification Algorithm
	FAMReS Algorithm
	Learning Architecture


	Performance Evaluation
	Experimental Setup and Data Collection 
	Comparison between BFA and csi -based Sensing with co-located BFA stations and csi monitors.
	Comparison between BFA and csi-based Sensing with co-located BFA stations and csi monitors
	Comparison between BeamSense and csi-based approaches for remote sensing
	Performance as a Function of the Spatial Diversity
	Evaluation of Angle and Sub-Channel Resolution
	Evaluation of CNN Filter Size

	Evaluation of BeamSense with FAMReS Algorithm 
	BeamSense Performance as a Function of the Time Variable δ 
	BeamSense Performance as a Function of the Number of Subjects in the Training Dataset
	Inference Time, Computational Complexity, and Energy Efficiency of BeamSense 
	BeamSense sensing overhead analysis 
	Evaluating BeamSense Performance in Smart Home Applications: A Case Study on Human Gesture Recognition 

	Conclusions and Remarks
	CRediT authorship contribution statement
	Acknowledgments
	Data availability
	References


