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ARTICLE INFO ABSTRACT

Dataset link: https://ieee-dataport.org/docume
nts/dataset-human-activity-classification-mu-m
imo-bfi-and-csi

In this paper, we propose BeamSense, a completely novel approach to implement standard-compliant
Wi-Fi sensing applications. Existing work leverages the manual extraction of the uncompressed channel
state information (CSI) from Wi-Fi chips, which is not supported by the 802.11 standards and hence
requires the usage of specialized equipment. On the contrary, BeamSense leverages the standard-compliant
compressed beamforming feedback information (BFI) (beamforming feedback angles (BFAs)) to characterize
the propagation environment. Conversely from the uncompressed CSI, the compressed BFAs (i) can be recorded
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SU-MIMO without any firmware modification, and (ii) simultaneously captures the channels between the access point and
MU'NFMO all the stations, thus providing much better sensitivity. BeamSense features a novel cross-domain few-shot
Beamforming

learning (FSL) algorithm for human activity recognition to handle unseen environments and subjects with a few
additional data samples. We evaluate BeamSense through an extensive data collection campaign with three
subjects performing twenty different activities in three different environments. We show that our BFAs-based
approach achieves about 10% more accuracy when compared to CSI-based prior work, while our FSL strategy
improves accuracy by up to 30% when compared with state-of-the-art cross-domain algorithms. Additionally,
to demonstrate its versatility, we apply BeamSense to another smart home application — gesture recognition
— achieving over 98% accuracy across various orientations and subjects. We share the collected datasets and
BeamSense implementation code for reproducibility — https://github.com/kfoysalhaque/BeamSense.

Beamforming feedback angles

1. Introduction

Since 1990, Wi-Fi has become the technology of choice for Internet
connectivity in indoor environments [1]. Beyond connectivity, Wi-Fi
signals can be used as sounding waveforms to perform activity recog-
nition [2], health monitoring [3], and human presence detection [4],
among others [5]. The intuition behind Wi-Fi sensing is that humans
act as obstacles to the propagation of radio signals in the environment.
Specifically, when encountering the human body, the radio waves
undergo reflections, diffractions, and scattering that make the signals
collected at the Wi-Fi receiver differ from the transmitted ones. Wi-Fi
sensing aims at detecting the changes in the Wi-Fi signals and associat-
ing them to the way the subject stays/moves in the environment, thus
realizing device-free monitoring solutions. To date, the vast majority
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of Wi-Fi sensing systems — discussed in Section 2 — leverage channel
measurements obtained from pilot symbols as sensing primitive. Such
measurements are usually referred to as CSI and describe the way
the signals propagate in the environment. Despite leading to good
performance, CSI-based techniques require extracting and recording the
CSI estimated by the Wi-Fi devices involved in the sensing activities,
and such operations are currently not supported by the IEEE 802.11
standard. This has led to the introduction of custom-tailored firmware
modifications to extract the CSI [6-10], which makes the sensing
process not scalable. Such CSI extraction tools only provide support
for single-user multiple-input multiple-output (MIMO) sensing as the
channel is sounded on the link between the transmitter and the device
implementing the extraction tool. Therefore, Wi-Fi sensing approaches
relying on CSI extraction tools cannot benefit from the spatial diversity
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Fig. 1. CSI-based vs. BFI-based Wi-Fi sensing.

that can be gained through multi-user MIMO (MIMO) transmissions.
Spatial diversity may be achieved considering multiple CSI collectors
but this would increase the computation burden as synchronization
among the devices would be needed. Moreover, even if CSI extraction
could be supported in the future without the need for custom-tailored
firmware modifications, it would require additional processing to ex-
tract the data from the chip, thus increasing energy consumption.
Therefore, we argue that more suitable approaches to Wi-Fi sensing
should be put forward.

In this paper, we propose BeamSense, an entirely new approach
to Wi-Fi sensing that leverages the MU-MIMO capabilities of Wi-Fi to
drastically increase sensing performance while substantially reducing
sensing overhead. As shown in Fig. 1, BeamSense leverages the
compressed BFI (BFAs)- traditionally used to beamform transmissions
- to estimate the propagation environment between the access point
(AP) and the connected stations (STAs). In stark contrast with CSI-
based sensing, BeamSense (i) does not need firmware modifications,
since any off-the-shelf Wi-Fi device can capture BFI packets, which are
sent unencrypted to keep the processing delay below a few millisec-
onds [11]; and (ii) does not require synchronization among receivers,
since a single BFAs report contains the information about all the
MIMO channels established between the AP and the STAs. In fact,
while devices empowered with CSI extraction tools allow obtaining
information on a single MIMO channel, when capturing the BFAs we
obtain the channel information associated with all the STAs involved
in a MU-MIMO transmission. Thus, multiple spatially diverse channel
information is collected with a single capture. For this reason, Beam—
Sense exhibits far better performance in challenging environments, as
shown in Section 4.

This paper provides the following contributions:

» We propose BeamSense, a new approach to Wi-Fi sensing where the
standard-compliant BFAs routinely sent in MU-MIMO Wi-Fi networks
is used to characterize the propagation environment between the MU-
MIMO users and the AP. To the best of our knowledge, this is the first
work proposing the utilization of BFAs to perform Wi-Fi sensing;

« We propose a deep learning (DL)-based Fast and Adaptive Micro
Reptile Sensing (FAMReS) algorithm to perform activity classification
based on BFAs. We chose DL since it has shown remarkable perfor-
mance in classifying activities in Wi-Fi sensing settings [12]. However,
it is well-known that bare-bone DL models may perform poorly when
tested in different settings [13]. For this reason, FAMReS leverages FSL
to quickly generalize to different subjects and environments with few
additional data points;

» We extensively evaluate BeamSense through a comprehensive data
collection campaign, with three subjects performing twenty different
activities in three different environments. For that, we built a re-
configurable IEEE 802.11ac MU-MIMO network with three STAs and
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one AP. The Wi-Fi network was also synchronized with a camera-
based system that records the ground truth for our experiments. A
secondary co-located IEEE 802.11ac network empowered with Nexmon
CSI [8] concurrently collects the CSI measurements used for com-
parative analysis. We show that our BFAs based approach combined
with a traditional convolutional neural network (CNN) without data
pre-processing achieves about 10% more accuracy when compared to
state-of-the-art CSI-based techniques with substantial pre-processing.
Moreover, FAMReS improves accuracy by up to 30% and 80% when
compared with state-of-the-art cross-domain algorithms.

» We demonstrate the versatility of BeamSense by applying it to
another smart-home application — gesture recognition — achieving over
98% accuracy across varying orientations and subjects. We show that
also in this application, FAMReS significantly outperforms state of the
art (SOTA) methods like OneFi and WiTransfer, showcasing its robust
generalization capabilities. For reproducibility, we released the en-
tirety of our 800 GB datasets and BeamSense implementation
code at https://github.com/kfoysalhaque/BeamSense.

The rest of the article is organized as follows. In Section 2 we review
the existing literature in the area. The BeamSense Wi-Fi sensing
system is illustrated in Section 3 whereas the performance evaluation of
the system is presented in Section 4. Section 5 concludes the discussion.

2. Related work

Over the last ten years, a lot of efforts have been made to explore
wireless sensing, which is summarized by Liu et al. in [14]. The first
Wi-Fi sensing approaches were based on the received signal strength
indicator (RSSI) [15-20]. More recently, researchers have focused on
the more fine-grained CSI information that describes how the wireless
channel modifies signals at different frequencies rather than providing
a cumulative metric on the signal attenuation as the RSSI does. Passive
Wi-Fi radar (PWR)-based approaches [21-25] have also been proposed
in the literature. However, such an approach requires specialized hard-
ware (software defined radio (SDR)) to analyze the collected signal. In
the rest of the section, we focus on CSI-based sensing, and summarize
the main research on the topic.

Background on CSI-based Sensing. The term CSI can refer both
to the time-domain channel impulse response (CIR) or the frequency-
domain CFR. Specifically, the CIR encodes the information about the
multipath propagation of the transmitted signal: each peak in the CIR
represents a propagation path characterized by a specific time delay
(linked with the length of the path) and an attenuation. Multipath
propagation is a typical phenomenon of indoor environments, where
obstacles (objects, people, animals) in the surroundings act as reflec-
tors/diffractors/scatterers for the irradiated wireless signals. In turn,
the receiver collected different copies of the transmitted signal each
associated with a different propagation, or, equivalently, an obstacle
in the environment. The CFR represents the Fourier transform of the
CIR and describes how the environment modifies signals transmitted
with different carrier frequencies. Specifically, indicating with x(f,)
and y(f,t) the frequency domain representation of the transmitted
and received signals at time ¢ and frequency f respectively, and with
h(f,7) the CFR, we have that y(f,7) = h(f,t) X x(f,#) [26]. Consid-
ering the M x N MIMO orthogonal frequency-division multiplexing
(OFDM) system, with K sub-channels, and M and N transmitting and
receiving antennas respectively, the CFR is a K x M x N-dimensional
matrix providing the amplitude and phase information over each OFDM
sub-channel for any given pair of transmitting and receiving antenna.

Existing Research on CSI-based Sensing. Over the last decade,
CSI-based sensing has been proposed for a wide variety of applications.
Among the most compelling, we mention person detection and identi-
fication [27-29], crowd counting [18,30], respiration monitoring [31],
baggage tracking [32], smart homes [33,34], human pose tracking [35-
38], patient monitoring [39,40], with most of the previous research
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activities focusing on human activity recognition (HAR) and human
gesture recognition (HGR) [13,41-45]. The above list is definitely not
exhaustive. For excellent survey papers on the topic, we refer the
reader to [2,5,46,47]. In the following, we just summarize the most
recent approaches that are most related to the work conducted in this
article. Guo et al. presented WiAR [48], a CSI-based system achieving
up to 90% accuracy in the recognition of 16 human activities. Similarly,
a meta-learning-based approach called RF-Net was presented in [49]
based on the usage of recurrent neural networks with long short-term
memory (LSTM) cells. However, only six activities were considered
in the evaluation. Regarding HGR, [43,44] presented Widar 3.0 and
OneFi, respectively considering six and forty gestures. The authors
in [43] proposed to use a body velocity profile (BVP) measure which
has been shown to improve the generalization capability of the classifi-
cation algorithm. The authors of [44] used one-shot learning to classify
unseen gestures with few labeled samples. The majority of previous
work has been evaluated on 802.11n channel data while, to the best
of our knowledge, only two works considered HAR in the context of
802.11ac [12,13]. Meneghello et al. proposed to use the Doppler shift
estimated through the CSI to obtain an algorithm that generalizes to
different environments [13] whereas, Bahadori et al. used few-shot
learning approach to achieve environmental robustness [12].

Limitations of CSI-based Sensing. Since the CSI is computed at
the physical layer (PHY), it is not readily available with off-the-shelf
network interface cards (NICs). Although CSI can be extracted with
SDR implementations, which only support up to 40 MHz of bandwidth,
being only IEEE 802.11 a/g/p/n compliant [12,50]. Moreover, SDRs
are costly specialized hardware that may be unavailable in real-life
situations and require expert knowledge to be used. To overcome such
limitations, in recent years, researchers have developed some CSI ex-
traction tools that run on commercial Wi-Fi NICs. Two of them, namely
Linux CSI [6] and Atheros CSI [7], target IEEE 802.11n compliant
NICs (up to 40 MHz bandwidth). The third one, Nexmon CSI [8],
allows extracting the CFR from some IEEE 802.11ac compliant devices,
supporting bandwidths up to 80 MHz. The most recent one, AX CSI [10]
is designed for IEEE 802.11ax devices and provides CFR measurements
also on 160 MHz bandwidth channels. These tools, however, need
non-trivial firmware modifications of the NICs. Moreover, they do not
provide support for estimating the channel on MU-MIMO channels.
Both when the CSI extractor tool is implemented on one receiving Wi-
Fi device or on another monitor device, only the MIMO links between
the transmitter and the CSI collector is monitored, i.e., only SU-MIMO
mode is supported. This is a limitation of CSI-based systems as MU-
MIMO systems can provide way richer information than SU-MIMO ones
as they capture the correlation of the propagated signal from different
STAs relative to the sensed subject. As a last consideration, Wang
et al. [51] recently pointed out the importance of the placement of the
CSI extractor device. Specifically, they showed that accurate placement
of the sensing devices can enhance the sensing coverage by mitigating
severe interference. Non-calibrated placement of the sensing devices
can severely hamper the sensing quality.
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Recent BFI-based Sensing Approaches. BFI is gaining momentum
in the research community as a proxy to the CSI as it provides spa-
tially diverse rich channel information from commercial Wi-Fi devices
without the need for any firmware modification or direct access to the
hardware. In this context, while the CSI is nowadays well recognized to
be valuable for sensing purposes, some recent research work has also
considered BFI for sensing showing its high potentialities.

Jiang et al. investigate the Wi-Fi sensing performance in terms of
angle of arrival (AoA), Doppler, and range estimation based on the
BFI for two different approaches to obtain the beamforming matrix,
i.e., performing eigenvalue decomposition (EVD) (i) on the channel
autocorrelation matrix or (ii) on the conjugate transpose of the channel
autocorrelation matrix [57]. The results show that the first approach
retains only the Doppler and time delay differences of different paths,
whereas the second scheme retains absolute Doppler and delay in-
formation. Kondo et al. evaluate the impact of uni-directional (DL-
MU-MIMO) and bi-directional (DL and UL-MU-MIMO) beamforming
on Wi-Fi sensing performance through the BFI reconstructed from
BFAs [52]. The results demonstrate that the framework based on bi-
directional beamforming achieves better sensing performance in terms
of angle of departure (AoD). The same authors leverage the BFI for
respiratory rate estimation in [53] achieving an estimation error lower
than 3.2 breaths/minute. Finally, Wu et al. proposed a BFI-based
wireless sensing system for device localization, passive tracking, and
sign language recognition [54]. Their proposed system achieves a
localization median error of 0.72 m, passive tracking median error
of 0.67-0.95 m, and sign language recognition accuracy of 92.5%—
97.14%. We stress that all these sensing systems leverage the BFI
matrices reconstructed from the compressed BFAs transmitted over
the air. This incurs additional pre-processing stages that increase the
system latency and computational burden of the sensing system. On
the contrary, BeamSense is based on the compressed BFAs which
are directly captured from ongoing transmissions and do not need any
pre-processing. Another advantage of using BFAs instead of the BFI
is the dimensionality of the data. Being BFAs a compressed version
of the BFI, their processing requires neural networks with a smaller
input dimensionality and, in turn, with a smaller number of learnable
parameters, with respect to processing BFI data. We included some
preliminary results about this methodology in [58] where we present
Wi-BFI [58], an open-source tool to capture BFAs packets from any
ongoing Wi-Fi transmissions, decode the BFAs and reconstruct BFI in
both real-time and from captured traces. Note that [58] focuses on the
BFAs extraction and reconstruction of BFI with only some preliminary
results about sensing capabilities with BFAs. In this current work, we
instead deeply analyze the use of BFAs for sensing, including a novel
FSL-based algorithm that enhances the generalization capabilities of the
sensing system.

Table 1 provides a comprehensive comparison between the pro-
posed BFAs-based sensing approach (BeamSense) and other SOTA
CSI and BFI-based methods. It provides a comprehensive summary
of BeamSense and other SOTA approaches, evaluating them based
on the technology utilized, operating bandwidth, sensing primitive
considered, firmware modification requirements, sensing applications,
number of classes, sensing accuracy, and domain generalization capa-
bilities. The comparison highlights the advantages of BeamSense with
respect to other sensing approaches. Specifically, BeamSense does
not require firmware modifications and allows achieving high accu-
racy across multiple tasks (96%—99%), offering superior generalization
performance (90%-95%) across different scenarios. These factors make
BeamSense the preferred choice for practical applications where ease
of integration and robustness to domain shifts are critical.

Advantages of BeamSense over CSI-based sensing approaches.
Our approach overcomes the limitations of traditional CSI-based meth-
ods by leveraging the MU-MIMO compressed beamforming feedback,
which is transmitted as part of the channel sounding procedure stan-
dardized in IEEE 802.11. Unlike CSI-based approaches, which re-
quire firmware modifications to extract CSI data, our system utilizes
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Table 1
Overview of the main characteristics of BeamSense and state-of-the-art approaches.
Model name Technology Considered Sensing Firmware Sensing applications No. of Sensing Domain
considered bandwidth primitive modification classes accuracy (%) generalization
(MHz) accuracy
BeamSense IEEE 80 MHz BFAs No Activity classification 20 96-99 90-95
(proposed) 802.11 ac and gesture recognition
Bi-directional IEEE 80 MHz BFI (EVD No Human localization and N/A 95-98 92-96
BEM [52] 802.11ax on autocor- AoD estimation
relation
matrix)
Respiratory rate IEEE 80 MHz BFI No Respiratory rate N/A Error <3.5 N/A
estimation [53] 802.11ax estimation breaths/minute
BFI-based IEEE 80 MHz BFI No Device localization, 20 92.5-97.14 Localization
sensing [54] 802.11ax passive tracking, and error:
sign language 0.3-0.72 m,
recognition Tracking error:
0.67-0.95 m
SignFi [55] IEEE 40 MHz CsI Yes Sign gesture 276 94.81-98.91 86.66
802.11n classification
WiAR [48] IEEE 40 MHz CSI Yes Human activity 16 80-95 80-90
802.11n recognition
OneFi [44] IEEE 40 MHz CSI Yes Human gesture 40 84.2-98.8 75-91
802.11n recognition via
one-shot learning
Wi-Transfer [56] IEEE 80 MHz CSI Yes Transfer learning-based 6 88-99 85-96
802.11n/ac sensing
Widar 3.0 [43] IEEE 40 MHz CSI Yes Gesture recognition via 15 92.7 82.6-92.4
802.11n body velocity profile
(BVP)
ReWiS [12] IEEE 80 MHz CSI Yes Activity recognition via 4 98-100 90-100
802.11ac multi-receiver CSI
learning
SHARP [13] IEEE 80 MHz CSI Yes Human activity 7 >95 90-95
802.11ac recognition via
micro-Doppler
standard-compliant 802.11 ac/ax devices to collect compressed beam-
. o L MU-MIMO [1] _J [2] MU-MIMO
forming feedback packets. This eliminates the need for specialized Beamformer Null g\‘l‘glﬁ’)“ket Beamformees
hardware or infrastructure, making our system more practical for 1

deployment compared to CSI-based strategies. Moreover, BFAs can be
captured from anywhere within the network without any direct access
to the sensing devices, i.e., the devices estimating the wireless channel.
The device collecting the beamforming feedback (monitor device)
can remotely obtain channel information of the links between the
AP and multiple STAs by simultaneously capturing the beamforming
packets transmitted unencrypted over the air at the end of the channel
sounding procedure. Hence, as presented in Fig. 2(a), BeamSense can
be deployed directly at the edge server where the sensing application
is deployed, thus reducing the channel airtime overhead for sensing
data transmission and, in turn, the overall system latency. Contrarily,
traditional CSI-based methods require direct access to the device esti-
mating the channel as the firmware of the devices needs to be modified
to enable CSI extraction. Moreover, the extracted CSI needs to be fed
back to the edge server as presented in Fig. 2(b), introducing airtime
overhead for sensing data transmission. This overhead may lead to a
degradation of communication performance.

3. The BeamSense Wi-Fi sensing system

Fig. 3 shows a high-level overview of BeamSense, which leverages
the channel estimation mechanism standardized in IEEE 802.11 to
sound the physical environment. The channel estimation is performed
on the STAs (beamformees) and is reported to the AP (beamformer)
that uses it to properly beamform MU-MIMO transmissions. The report
is referred to as the BFI and is transmitted over the air in clear text
in the form of BFAs frames. Since the AP continuously triggers the
channel estimation procedure on the connected STAs, the BFAs contains

M o e BB

E _|-E', 2. Compute V

BFAs Frame ] 3. Compute BFAs

.y
1
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oy
BeamSense | St BeamSense
BFAs extraction and :!_ _— Model training
aggregation BeamSense Classification
see Figure 5 Labeled dataset output

Fig. 3. The BeamSense Wi-Fi sensing system.

very rich, reliable, and spatially diverse information. Moreover, the BFAs
from multiple STAs can be collected with a single capture by the AP or any
other Wi-Fi-compliant device, thus reducing the system complexity.

BeamSense Technical Challenges. BeamSense is a completely
novel way to perform Wi-Fi sensing. While previous work in the lit-
erature deal with the well-known CSI data, we instead consider the
BFAs as a sensing primitive. We stress that BFAs represents a com-
pletely new type of data. While CSI consists of complex I/Q-values,
BFAs are expressed in terms of rotational angles of the compressed
matrices. In this respect, the first challenge we need to address is the
design and implementation of a novel tool to extract the BFAs data
embedded within Wi-Fi frames transmitted from the beamformees to
the beamformer as part of the channel-sounding procedure. On top
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of that, the second challenge concerns the implementation of a new
data processing pipeline for the new data type that effectively performs
activity classification based on BFAs data and provides environment
adaptation features. The third challenge to be addressed is the setup
of an extensive experimental testbed to implement and assess the
performance of the new Wi-Fi sensing approach in a real-world scenario
with commercial Wi-Fi devices.

In the following, we thoroughly detail the BeamSense sensing
system. We use the superscripts 7' and { to denote the transpose and
the complex conjugate transpose (i.e., the Hermitian). We define with
«C the matrix containing the phases of the complex-valued matrix C.
Moreover, diag(c,...,c ) indicates the diagonal matrix with elements
(¢q, ..., ¢;) on the main diagonal. The (¢, ¢,) entry of matrix C is defined
by [C], .,» while I refers to an identity matrix of size ¢ X ¢ and I, is
a ¢ x d generalized identity matrix.

3.1. BeamSense: A walkthrough

The BeamSense sensing system entails eight steps, as depicted in
Fig. 3. The process stems from the way beamforming is implemented
in IEEE 802.11 networks. Specifically, the beamformer (AP) uses a
matrix W of pre-coding weights — called steering matrix — to linearly
combine the signals to be simultaneously transmitted to the different
beamformees (STAs). The steering matrix is derived from the CFR
matrices H estimated by each of the beamformee and that describe
how the environment modifies the irradiated signals in their path to
the receivers. The estimation process is called channel sounding and is
triggered by the AP which periodically broadcasts a null data packet
(NDP) (step 1 in Fig. 3) that contains sequences of bits — named
long training fields (LTFs) — the decoded version of which is known
by the beamformees. Since its purpose is to sound the channel, the
NDP is not beamformed by the AP. This is particularly advantageous for
sensing purposes, since the resulting CFR estimation will not be affected
by inter-stream or inter-user interference. The LTFs are transmitted
over the different beamformer antennas in subsequent time slots, thus
allowing each beamformee to estimate the CFR of the links between
its receiving antennas and the beamformer transmitting antennas. The
LTFs are modulated - as the data fields — through OFDM by dividing
the signal bandwidth into K partially overlapping and orthogonal
sub-channels spaced apart by 1/7. The input bits are grouped into
OFDM symbols, a = [a_g 5, ..., ak>_1], Where q; is named OFDM sam-
ple. These K OFDM samples are digitally modulated and transmitted
through the K OFDM sub-channels in a parallel fashion thus occupying
the channel for T seconds. The transmitted LTF signal is

K/2-1
Slx(t) — ej2nf[t Z akej27rkt/T’ (1)

k=—K /2
where f, is the carrier frequency. The NDP is received and decoded by
each STA (step 2) to estimate the CFR H. The different LTFs are used to
estimate the channel over each pair of transmitting (TX) and receiving
(RX) antennas, for every OFDM sub-channel. This generates a KxM XN
matrix H for each beamformee, where M and N are respectively the
numbers of TX and RX antennas. We refer the reader to Section 2
for additional details about the CFR. Next, the CFR is compressed —
to reduce the channel overhead — and fed back to the beamformer.
Using H, to identify the M x N sub-matrix of H containing the CFR
samples related to sub-channel k, the compressed beamforming feedback
is obtained as follows ([59], Chapter 13). First, H, is decomposed
through singular value decomposition (SVD) as

H! =U,S,Z]. 2

where U, and Z, are, respectively, N x N and M X M unitary matrices,
while the singular values are collected in the N x M diagonal matrix S,.
Using this decomposition, the complex-valued beamforming matrix V,
is defined by collecting the first Ngg < N columns of Z,. Such a matrix
is used by the beamformer to compute the pre-coding weights for the
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Algorithm 1: V; matrix decomposition

Require: V;

f)k - diag(ejl[v“]"”vl o ,ej‘[v"]M-Nss) ;

Q, =V, D};

for i « 1 to min(Ngg, M — 1) do
bei=24[Q],, with ¢ =i,...M -1
compute D, ; through Eq. (3);
Q< D; Q4

for/ <i+1to M do

Wy i = arccos ()i ;
kti = T |5
’ NCvET

compute Gy ,; through Eq. (4);
Q< Gy Q5

Ngg spatial streams directed to the beamformee. Hence, V, is converted
into polar coordinates as detailed in Algorithm 1 to avoid transmitting
the complete matrix. The output is matrices D, ; and G, ,;, defined as

I, O 0
0 e/Prii
D, = 0 0 , 3
0 e/Pm-1i
0 0 1
I, 0 0
0 coswyyp, 0 sinyy g
Giri=| . 0 Tp_ic 0 L (€))
—sinyy ¢, 0 COS Wy 4. 0
0 . 0 Ly,

that allow rewriting V, as V, = V,D,, with

min(Ngg,M—1) M
Vi = H <Dk,i H Gz,,,,->HMxNSS, (%)
i=1 I=it+1

where the products represent matrix multiplications. In the V, matrix,
the last row - i.e., the feedback for the Mth transmitting antenna
— consists of non-negative real numbers by construction. Using this
transformation, the beamformee is only required to transmit the ¢
and y angles to the beamformer as they allow reconstructing V,
precisely. Moreover, it has been proved (see [59], Chapter 13) that the
beamforming performance is equivalent at the beamformee when using
V, or V, to construct the steering matrix W. In turn, the feedback for
D, is not fed back to the beamformer. The angles are quantized using
b, € {7,9} bits for ¢ and b, = by — 2 bits for y, to further reduce
the channel occupancy. The quantized values - g, = {0, ..., 2% — 1} and
q, =1{0, ... ,2% — 1} - are packed into the compressed beamforming
frame (step 3) and such BFAs are transmitted to the AP (step 4) in clear
text. Each BFAs frame contains A number of angles for each of the K
OFDM sub-channels for a total of (K - A) angles each. In Fig. 4, we show
an example of how beamforming is conducted in a 3 x 2 MIMO system.

BeamSense captures the BFAs frames (step 5), and uses the
channel estimation data to perform Wi-Fi sensing. We remark that,
since MU-MIMO requires fine-grained channel sounding - every around
10 ms to account for user mobility, according to [60] — it is fundamental
to process the BFAs in a fast manner at the AP. For this reason, and
since cryptography would lead to excessive delays, the angles are
currently sent unencrypted. Therefore, the BFAs frames are exposed to
and can be read by any device that can access the wireless channel.
Specifically, BeamSense relies on the BFAs transmitted by all the
beamformees in the environment and captured during a time window
of W seconds to reliably estimate the activity being performed by
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Fig. 4. Example of 3 x 2 MIMO system. s,,s, and r|, r, are respectively the transmitted
and received signals. The symbol W indicates the steering matrix, while H is the CFR.
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Fig. 5. BFAs data processing. The processing is applied to each observation window
of W seconds.

a human moving within the propagation environment. This is done
by using the BFAs frames collected within the window as input for
a learning-based algorithm (detailed in Section 3.2). Note that, as
BeamSense leverages ongoing MU-MIMO transmissions, there is no
guarantee that the same number of BFAs frames are collected within
a specific time interval of W seconds. This is related to the fact that
we have no control over when the beamformer triggers the channel
sounding procedure that generates BFAs data. Therefore, as the neural
network-based classification algorithm requires the input to be of a
fixed dimension, we need to determine a fixed-size input that represents
the BFAs frames captured during the time window. The processing is
applied just after having collected the data on the wireless channel
(gray box in Fig. 3) and is summarized in Fig. 5. Specifically, we
consider the average number S of BFAs frames counted (at training
time) in each window during an activity recording. Windows having
less than S frames are padded with BFAs frames containing zero-valued
angles while packets exceeding such threshold are discarded. Hence,
the K x A BFI angles contained in each packet are extracted and the
final tensor is obtained by aggregating the .S x K x A angles for all the
U MU-MIMO users for which the BFAs data have been captured in the
observation window. Note that even if it would be possible to define
learning algorithms that accept input of different sizes, this would
lead to an increase in the complexity of the approach, both from the
training and inference perspective. Therefore, to keep the model simple
for implementation on memory- and battery-constrained devices, we
decided to follow a fixed-input approach.

To obtain the training data, the .S x K X A X U tensors derived from
the BFAs farmes captured during the data collection phase are stored in
a dataset, together with their associated activity and/or phenomenon,
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and a timestamp (step 6 in Fig. 3). This phase can be performed
offline by sensing application vendors without requiring the users’
cooperation. The trained model (step 7) is then used for online sensing
(step 8).

The BFAs are transmitted unencrypted in accordance with the IEEE
802.11 standards. Specifically, the standards specify that BFAs should
be fed back using “Not Robust Action Frames”, which are transmitted
unencrypted. This is linked with the need to receive channel feedback
with low latency to enable MIMO transmissions. Indeed, given the
variability of the wireless channel, BFAs should be transmitted every
about 10 ms and promptly used for precoding MIMO transmissions. In
this context, encryption would make the procedure less efficient and
may lead to a degradation of the communication performance.

Note that BFAs do not contain any sensitive information about
users and their data. Indeed, BFAs are a compressed and quantized
representation of the CSI estimated for the links between the AP and
the STAs in the considered MU-MIMO network. Such angles are used
for precoding purposes to enable the simultaneous transmission of
multiple data streams to the STAs. Even if the choice to transmit
them unencrypted is prone to adversarial attacks [61], exploring secure
transmission methods for beamforming feedback, such as encryption
or other physical layer security techniques, is outside the scope of
this work. Our primary focus is on demonstrating the feasibility and
effectiveness of using BFAs for wireless sensing in compliance with
existing standards, which require BFAs to be fed back unencrypted.

The timing of the channel sounding procedure, which generates
BFAs samples, is a critical factor influencing the performance of sensing
systems that rely on this information, such as BeamSense. As men-
tioned in [60], channel sounding should be performed every 10 ms,
resulting in about 100 BFAs frames per second. This rate ensures that
the AP keeps the precoding aligned with the channel variations, which
are encoded in the BFAs estimated at the STAs and promptly fed back
to the AP. This rate is also enough to provide adequate performance
in most sensing applications. However, it is important to recognize
that increasing the frequency of BFAs frames would result in finer
granularity of the CFR. With more frequent updates, the sensing system
would have access to more detailed and precise information about
the channel characteristics. The increased granularity would enhance
the system’s sensing capabilities, allowing it to track rapid and subtle
variations in the environment more effectively. As a result, higher
BFAs frame rates could lead to improved sensing performance, partic-
ularly in dynamic environments where the channel conditions change
frequently. This important aspect will be addressed in the upcoming
IEEE 802.11bf standard that will define proper strategies to integrate
communication and sensing services. In particular, new procedures
will be defined to enable the collection of channel information even
when no data is transmitted over the wireless channel, and, in turn,
no channel sounding is performed. This new feature will enable the
widespread adoption of BFAs-based sensing techniques such as Beam—
Sense. Importantly, BeamSense will be directly applicable to new
Wi-Fi standards, making it a strong candidate for integrated sensing
and communications applications.

3.2. The FAMREeS classification algorithm

Existing research in CSI-based sensing has exposed that designing
classifiers that are robust to changing the subject performing the ac-
tivity (i.e., different people) and the environment where the activity
is performed (i.e., different rooms) is very challenging [12,13,43,44].
On the other hand, it is hardly feasible to collect a large amount of
data for all possible scenarios. To address this key issue, we propose a
deep learning (DL)-based algorithm for BFI-based activity classification
called Fast and Adaptive Micro Reptile Sensing (FAMReS), which is a
few-shot learning (FSL) algorithm based on Reptile [62] which needs a
limited set of new input data to generalize to unseen environments.
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FSL is a DL technique that leverages only small amounts of ad-
ditional data to adapt to classes that are unseen at training time.
Specifically, in K-way-N-shot FSL, the model is trained on a set of
mini-batches of data sampled from only K different classes (ways)
and containing N samples (shots) of each class. The key idea is that
by feeding less data, the model is spurred to rapidly adapt to new
tasks. This unique property makes FSL a strong candidate to tackle
the diversity of environments. The key reason for using FSL for Wi-Fi
sensing is that we aim at creating an almost plug-and-play framework
for the end-users. In particular, it would be infeasible to account for
all the specific end-user scenarios — in terms of activities, people, and
environment diversity — during the algorithm design before its release
to the public. For these reasons, our BeamSense algorithm comes
with a base set of 20 different activities on 3 standard environments
on which it has been trained and, for generalization, is empowered
with few-shot learning capabilities to quickly adapt to new domains
(environments/subjects).

FSL can be categorized into embedding learning [63,64], and meta-
learning [62,65], among others. Specifically, Reptile is a gradient-based
meta-learning algorithm that learns the model parameter initialization
for rapid fine-tuning. The key idea is that there are some common
features between different tasks that can be learned through meta-
learning. Therefore, the model can be fine-tuned on a new task faster
with the meta-learned weights instead of training it from the beginning.
To find the initialization weights 6*, Reptile minimizes the expectation
of the loss function L, with respect to the different tasks z, i.e.,

0" =min B {Lf(x¥I0)1}, ®)
where f(x,y|0) is the model functional approximation between input
data x and output y obtained with parameters #. This is equiva-
lent to finding the ¢* that satisfies E, {V, (L, [f (x,y10)])} = 0 via,
e.g., stochastic gradient descent (SGD). SGD finds 6* through an iter-
ative procedure, by subsequently updating the value of § with a new
value 6’ based on the gradient information:

o=0-p i(%iw(h s (x,-,y,-wm) @

=0-p1 3 (0-0), ®
7=1

where n and m denote the number of tasks and sampled data points
of each task, respectively, f is a scalar denoting the step size, and
6=0- ai > Vo (L, [f (x1.%:10)]) are the updated weights using
m sampled data from 7, where a« denotes the learning rate. § can be
easily obtained using any deep learning API such as TensorFlow and
PyTorch. The meta-learning proceeds through the following steps: (i)
sample n new tasks {zr} with m data of each task (for K-way-N-shot, m
is the product of K and N); (ii) compute &; (iii) update 8 with Eq. (8);
(iv) iterate (ii) and (iii) until the loss function stops decreasing. Fig. 6
shows how FSL is implemented through the Reptile algorithm: once
obtained the initialization weights 6* through meta-learning, the model
is fine-tuned on each different task.

3.2.1. FAMReS algorithm

The original purpose of Reptile is to extract meta-features from a
large dataset so that it can be quickly fine-turned when a new task is
sampled from the given dataset. However, Reptile requires the inference
and meta-learning data to be sampled from the same dataset. Such a
dataset should contain as many classes as possible so that the meta-
learner can extract the general characteristics and fine-tune a task with
fewer classes. Since this is unfeasible in BFI-based sensing, we find
some common ground between meta-learning and general DL. The aim
of learning is trying to approach the ground truth between different
sampled data, while meta-learning is to find shared features between
various tasks. Thus, if we consider each batch of training data as a new
task in meta-learning, the learning problem can be converted into a meta-
learning problem. Formally, we aim to find a set of parameters 6* that
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minimize the loss function L on training data x; and y;:

0" =min B {L[f (x;,10)]}. ©
By plugging the derivative E; {V, (L [f (x;.3,10)])} to the SGD opti-
mizer, the optimization problem can be solved as

_ 1 <
9=0_aa;VG(L[f(xi’yiw)])' (10)

By comparing Eq. (7) with (10), we can easily find that if we set
n =1 in Eq. (7), the only difference between these two equations is a
constant scalar. Based on this observation, we note that Reptile learns
common ground from different mini-batch of data. The meta-learning
rate f, which is usually a scalar less than 1, is to adjust the step size
of the learning, making it less likely to overfit the mini-batch data.
This meta-learning process can be regarded as a warm-up phase before
learning, which makes the parameters 6 closer to the ground truth in
the hyperspace than random initial weights.

Inspired by this idea, FAMReS is divided into two stages: (i) meta-
learning stage; and (ii) micro-learning stage. In stage (i), the model
utilizes a small portion of data to learn the shared features. In stage
(ii), the same micro dataset is used for training. The complete FAMReS
workflow is reported in Algorithm 2. We stress the difference be-
tween the original Reptile and FAMReS: we only use a small portion
of data in meta-learning and micro-learning and use other unseen
data for testing. On the contrary, Reptile uses the same dataset for
both learning and inference. Although we have only done experiments
offline in this work, FAMReS is a strong candidate for online learning.
The algorithm can run the meta-learning phase while collecting new
data. Once there is enough data, it can move on to the next stage.
Therefore, we define a time variable § in experiments to simulate
the real-time implementation. We use the data collected within the §
time window for learning and the other for inference. FAMReS is an
empirical risk minimizer that can be unstable when using small values
for 5, depending on the distribution of training data. Meta-learning on
the micro dataset can only bring the initial parameters closer to the
ground truth point in the hyperspace, but the final parameters still
depend on the training set. Thanks to the high stability of the BFI data,
we can always get a reasonable accuracy in the experiments unless & is
extremely small.

Algorithm 2: The FAMReS Algorithm

Require: step size f, micro dataset D
Initialize: a set of parameters 0;
for iteration = 1,2, ... do
sample k points of data from D ;
compute § using the SGD formulation;
update the parameters: § < 6 + § (6 - 0);
for epoch =1,2,... do
update 6 running SGD on D

/*stage ix/

/*stage ii*/
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3.2.2. Learning architecture

In the last decade, CNNs have achieved tremendous success in
computer vision [66-68]. The convolution layer, the basis of CNNs,
can efficiently extract features by performing convolution operations
on the elements of the input data. Given that in this article our aim is
to investigate the effectiveness of BFI-based sensing as compared to CSI-
based sensing, we propose to use a VGG-based [67] CNN architecture
as the human activity classifier. The network is depicted in Fig. 7 and
entails stacking three convolutional blocks (conv-block) and a max-
pooling (MaxPool) layer. Softmax is applied to the flattened output to
obtain the probability distribution over the activity labels.

The conv-block is a stack of two convolution two-dimensional
(2D) layers. Following the design of VGG [67], each convolution layer
has a kernel size of 3 x 3 and a step size of 1. To introduce non-linearity
in the model, we apply a rectified linear units (ReLU) activation func-
tion at the end of each conv-block. Batch normalization is also used
in conv-blocks to avoid gradient explosion or vanishing. Our VGG-
based CNN consists of three conv-blocks with 128, 64 and 32 filters,
respectively. We choose a descending order of filters to reduce the
model size since features in lower layers are usually sparser and thus
require extracting more activation maps to be properly captured.

4. Performance evaluation
4.1. Experimental setup and data collection

We collected experimental data in three distinct indoor environ-
ments: a kitchen, a living room, and a classroom, as depicted in
Fig. 8. These environments were selected to capture diverse real-
world settings with varying levels of furniture, obstacles, and layout
configurations that influence wireless signal propagation. Six human
subjects participated in the experiments, performing twenty different
activities: jogging, clapping, push forward, boxing, writing, brushing teeth,
rotating, standing, eating, reading a book, waiving, walking, browsing phone,
drinking, hands-up-down, phone call, side bends, check the wrist (watch),
washing hands, and browsing laptop. The activities were chosen to rep-
resent a broad range of human motions, including both stationary and
dynamic actions, to test the system’s ability to differentiate between
subtle and vigorous movements. Each subject performed the activities
independently within a 2 m x 1.5 m rectangular region marked on the
floor in each environment to ensure a consistent and controlled area for
data collection. The size of the designated region was chosen to allow
for free movement while maintaining a practical distance of 2-3 m
from the STAs. Both BFAs and CSI data were collected for the same
duration of 300 s for each of the twenty activities for every subject
in different environments and orientations. This duration was selected
to capture sufficient data for analysis while ensuring the subjects could
comfortably perform the activities. The continuous data capture for this
duration for each activity allowed for the collection of a comprehensive
dataset enabling extensive temporal and spatial analyses.

To establish the ground truth, synchronous video streams of
the subjects performing each activity were recorded. These video
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streams were captured using fixed cameras positioned to cover the
entire rectangular region where the subjects performed the activities,
ensuring full visibility of the subject’s movements. The video cameras
were placed at angles that minimized occlusion and ensured clear
visibility of the subject’s entire body. The video streams were synchro-
nized with the BFI and CSI data using timestamps, ensuring precise
alignment between the recorded video streams of the activities and
the corresponding BFI and CSI frames. This synchronization ensured
that for every captured BFI and CSI frame, the corresponding activity
could be accurately identified and labeled, making the dataset reliable
for supervised learning models. As an example, three frames from the
captured video streams are shown in Fig. 9.

BeamSense Network Setup and Equipment. We set up an
802.11ac MU-MIMO network operating on channel 153 with center
frequency f. = 5.77 GHz and 80 MHz bandwidth. This allows sounding
K = 234 sub-channels, i.e., 256 available sub-channels on 80 MHz
channels minus 14 control sub-channels and 8 pilots. We use one AP
(beamformer) and three STAs (beamformees), as depicted in Fig. 10
in orange. The AP and the STAs are implemented through Netgear
Nighthawk X4S AC2600 routers with M = 3 and N = 1 antennas
enabled respectively for the AP and each of the STAs. The three STAs
are served with N = 1 spatial stream each and placed at three
different heights and significantly spaced from each other to form a
3 x 3 MU-MIMO system. According to the IEEE 802.11ac standard,
four beamforming feedback angles (two ¢ and two y) are needed to
represent each of the 3 x 1 channels between the AP and the STAs. In
our setup, the angle quantization process uses b, = 9 bits and b, = 7
bits for the feedback angles ¢ and y respectively. UDP data streams
are sent from the AP to the STAs in the downlink direction to trigger
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Fig. 10. Experimental setups for data collection.

the channel sounding. The BFI frames are captured with the Wireshark
network protocol analyzer running on an off-the-shelf laptop equipped
with an Intel 9560NGW wireless-AC NIC set in monitor mode. However,
note that any IEEE 802.11ac-compliant NIC set in monitor mode could
be used for this purpose. Moreover, notice that the frame-capturing
device does not need any direct link with the AP or the STAs. The only
requirement is that the capture is performed on the wireless channel
where the Wi-Fi network is operating. From the captured frames, the
¢ and the y angles are extracted for each of the STAs and used as
input to the BeamSense learning framework (see Section 3.2). Fig. 11
shows a sample taken from our dataset. We plot the magnitude of the
four collected beamforming angles for each of the 234 available sub-
channels, for ten different packets and four activities. Fig. 11 remarks
that the absolute values of the angles change quite significantly among
different activities, while do not change significantly among different
packets. This indicates that BFI-based sensing is a stable measurement
of the channel propagation environment and thus, a strong candidate
to be used within Wi-Fi sensing systems.

CSI Network Setup and Equipment. For comparative studies, CSI
data has also been collected concurrently with the BFI frame capture.
For this purpose, a Wi-Fi network consisting of an AP (referred to
as CSI AP) and three STAs (referred to as CSI monitors) has been
co-located with BeamSense network in the same environments, as
depicted in Fig. 10. The network operates on the IEEE 802.11ac channel
42, i.e., the center frequency is f, = 5.21 GHz and the bandwidth
is 80 MHz. The AP is implemented with a Netgear Nighthawk X4S
AC2600 router, while the CSI client is a PC APU2 board equipped
with an Intel 9560NGW wireless-AC NIC. For the CSI extraction, three
IEEE 802.11ac-compliant Asus RT-AC86U routers (referred to as CSI
monitors) equipped with the Nexmon CSI extraction tool [8] have been
deployed, as depicted in Fig. 10 in green. To have the same setup as
in the MU-MIMO network, the CSI AP is enabled with M = 3 antennas
whereas the CSI monitors are set up to sense the channel through N =1
antenna over N, = 1 spatial stream each. UDP packets are sent from
the CSI AP to the CSI client to trigger the channel estimation on the
three CSI monitors.

Real-time Deployment of BeamSense. The BeamSense frame-
work is deployed on a Linux-based workstation, configured to function
as an edge server for efficient wireless data processing. The edge server
is equipped with an Intel 9560NGW Wireless-AC network NIC, allowing
it to directly capture BFAs frames without requiring direct access to
the associated STAs or the network infrastructure. The edge server
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Fig. 11. BFAs for each sub-channel for four activities. Each plot shows the values of

10 different packets (superimposed lines with different colors). The x-axis reports the
indices of the sensed sub-channels. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

is positioned within the transmission range of the target network,
ensuring the passive collection of BFAs data.

For computational efficiency, the server is powered by a high-
performance Intel Core i7-12700 processor and an RTX A4000 GPU.
These hardware components enable fast preprocessing of the captured
BFAs data and facilitate the real-time execution of the BeamSense
classification algorithm, ensuring low-latency decision-making. Once
the BFAs frames are captured (as detailed in Section 4.1), the edge
server utilizes our previously developed open-source tool, Wi-BFI [58],
to extract the BFAs samples for all the active STAs. The raw data is
then processed through a multi-stage pipeline, outlined in Fig. 5, using
Python libraries such as NumPy and Pandas. The preprocessed data
is subsequently forwarded through the trained BeamSense classifier
for inference. The classification framework consists of two core com-
ponents: a baseline CNN and our proposed FAMReS algorithm. Both
models are implemented using Python’s TensorFlow library, which
supports the real-time execution required for practical deployment in
edge-based environments.

4.2. Comparison between BFA and CSI -based sensing with co-located BFA
stations and CSI monitors.

In the following, all the results are obtained with a time window
size of 0.1 s with 10 frames/sample with the data of three subjects
combined, unless specified otherwise.

4.2.1. Comparison between BFA and CSI-based sensing with co-located BFA
stations and CSI monitors

Fig. 12 shows the classification accuracy of BeamSense as com-
pared to the state-of-the-art CSI-based SignFi algorithm [55] in three
different environments. For a baseline comparison, we consider M1,
M2, & M3, and co-located ST1, ST2 & ST3 as the CSI collection device
and BFA STAs respectively. We first evaluate the performance of BFA
and CSlI-based sensing using the minimalist data processing and the
CNN architecture as referenced in Figs. 5 and 7 respectively. The
accuracy of BeamSense in the kitchen, living room, and classroom is
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Fig. 13. Conf. matrices for BeamSense and SignFi.

respectively 96%, 99%, and 95.47% whereas SignFi reaches 81.19%,
87.99%, and 84.08% of accuracy respectively, resulting in a 12.6%
accuracy decrease on average. We also show the performance of SignFi
with the processing pipeline presented in [55], which unwraps the
phase of each collected signal and then removes the phase noise by
multiple linear regression based on the unwrapped phase across all sub-
carriers and antennas. The classification accuracy improves to 91.34%,
93%, and 90% in the kitchen, living room, and classroom environ-
ments, respectively. Yet, BeamSense achieves better performance
with minimal data preprocessing.

To shed light on which classes are the hardest to classify with
CSI-based sensing, Fig. 13 shows the confusion matrices obtained in
the kitchen using BeamSense and SignFi without the custom pre-
processing. The bottom five classes are browsing laptop (index 20),
phone call (16), hands-up-down (15), clapping (02), and boxing (04),
which are indeed among the hardest classes to distinguish.

Fig. 14 shows the performance of BeamSense and SignFi with the
pre-processing in [55] evaluated in the kitchen as a function of the CSI
and BFAs capture location, and the window size W. We can see that,
for all three different locations, the performance of BeamSense and
SignFi follow the same trend for W = 1, however, when increasing the
window size, the performance of SignFi degrades in all the locations in
comparison to the BeamSense performance. Specifically, the perfor-
mance of SignFi drops by 79.25% when we switch from W = 0.1 to W
= 0.4 whereas the BeamSense performance fluctuates only by 2.79%.

It is worth mentioning that, BFAs are affected by phase offsets and
Automatic Gain Control (AGC) impairments as these hardware-related
impairments percolate from CSI to the BFAs given the processing steps
detailed in Section 3.1. However, compensating such offsets would
require reconstructing the BFI from the BFAs introducing additional
computation and increasing the latency of the system. Given the com-
plexity of performing activity recognition through radio signals and to
avoid such offset-removal preprocessing step, we addressed the sensing
task through a learning-based algorithm that is effectively able to ex-
tract meaningful features from BFAs for activity recognition, reducing
the effect of hardware-related offsets on the classification. To further
reduce the effect of such offsets, the data from all the beamformees
are jointly fed to our learning-based algorithm. As BFAs from different
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beamformees are affected by different offsets, their combination allows
the neural network to effectively extract meaningful features for the
sensing task, minimizing the effect of hardware impairments.

4.2.2. Comparison between BeamSense and CSI-based approaches for
remote sensing

For evaluating the remote sensing performance, we consider both
the BFA and CSI extraction tools do not have any direct access to
the sensing location and the STAs of the sensing environment. Thus
we place both the BFA and CSI extraction tools outside the sensing
environment— beyond the concrete wall, without any direct access to
the STAs of the sensing environment as presented in Fig. 15. The com-
parative performance analysis of BeamSense and SignFi for remote
sensing is presented in Fig. 16. Results show that the performance of
BeamSense does not hamper at all for any of the environments even
if the extraction tool is placed beyond the wall at a remote location. On
the contrary, the performance of SignFi with pre-processing decreases
by 20.80%, 19.27%, and 19.83% respectively for the kitchen, living
room, and classroom. This sudden plunge in SignFi performance is
caused by the fact that the CSI tool captures the channel between itself
and the AP whereas the BFA tool captures the channel between AP and
all the STAs of the network. Thus, for remote sensing, BeamSense
achieves better performance in comparison to the CSI based approaches
including SignFi.

For evaluating the remote sensing performance, we consider a
situation when both the BFAs and the CSI extraction devices do not
have any direct access to the sensing location and the STAs placed
in the sensing environment. Thus we place both the BFAs and CSI
extraction devices outside the sensing environment - i.e., beyond a
concrete wall — without any direct access to the STAs deployed in
the sensing environment, as presented in Fig. 15. The comparative
performance analysis of BeamSense and SignFi for remote sensing
is presented in Fig. 16. The results show that the performance of
BeamSense does not hamper at all for any of the environments even
if the extraction device is placed beyond the wall at 5 m from the
AP. On the contrary, the performance of SignFi with pre-processing
decreases by 20.80%, 19.27%, and 19.83% respectively for the kitchen,
living room, and classroom. This sudden plunge in SignFi performance
is caused by the fact that the CSI extraction tool captures the channel
between the device where it is installed and the connected AP, whereas
the BFAs tool captures the channel between AP and all the STAs of
the network, independently on the device where the tool is installed.
Thus, for remote sensing, BeamSense achieves higher accuracy in
comparison to the CSI based approaches including SignFi.

4.2.3. Performance as a function of the spatial diversity

Fig. 17 presents the performance of BeamSense when trained with
data from a single STA and with the combined data. First, we notice
that the single STA data is almost always a very stable measurement,
with the accuracy remaining high in most of cases. However, we
notice that some STAs perform worse than others, especially ST2 in
the kitchen, and ST2 and ST3 in the classroom. Indeed, due to the
physical location of these STAs, the communication channels between
them and the AP might be in deep fade causing BeamSense to perform
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poorly. However, by aggregating the spatially diverse STA data, the
overall accuracy is improved by up to 43.81% in the classroom.
Given the variability of the Wi-Fi channel, considering different STA
locations imply obtaining completely different angles for the same
activity, even in the same environment, as shown in Fig. 17. To further
investigate the sensing performance as a function of the STA location,
we conduct an experiment in the kitchen entailing three different STA
locations as depicted in Fig. 18. The first placement is referred to as
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‘Orientation 1’ while ‘Orientation 2’ and ‘Orientation 3’ are obtained
by physically rotating each STA by 20° clockwise, which corresponds
to placing the STA around 2 m away from the previous location.
Fig. 19 shows the accuracy of BeamSense in the kitchen when using
data collected through each of the three setups. We notice some of
the STAs individually perform poorly in some orientations due to the
physical location of the STA. However, BeamSense performs very well
when combining all the STAs: the accuracy is 99.53%, 99.46%, and
99.23% respectively in Orientation 1, Orientation 2, and Orientation
3. Therefore, multi-STA sensing should be preferred over single-STA
sensing whenever possible.

4.2.4. Evaluation of angle and sub-channel resolution

It is known that Wi-Fi sensing performs worse when lowering the
number of sub-channel considered in the sensing process [31,69]. Ex-
tensive feature extraction or higher sampling frequency can be utilized,
at the cost of increasing the computational burden and intensifying pre-
processing steps, as well as increasing the computational complexity
of the learning process. For this reason, we investigate the trade-off
between the number of angles and sub-channels considered for sensing
and the sensing performance.

Fig. 20 shows the accuracy of BeamSense as a function of the num-
ber of sub-channels utilized in the learning process. To down-sample
the sub-channels, we take the first 20, 40, 80, and 160 sub-channels,
to emulate sensing systems with smaller available bandwidths. As
expected, the accuracy decreases by 6.31%, 3.80%, and 3.46% respec-
tively for the kitchen, living room, and classroom when we switch from
234 to 20 sub-channels. However, notice that this operation drastically
decreases the input tensor dimension from 10 x 234 x 12 = 28080 to
10 x 20 x 12 = 2400, implying that sub-channel resolution decreases
the computational burden by 10x while maintaining the accuracy
above 92% in all the considered scenarios.

Fig. 21 shows BeamSense performance as a function of the number
of angles considered for sensing. STA1 is considered for angle 1, angle
2, angle 3, angle 4, and the combination of four angles, whereas STA1
and STA2 are considered for the combination of eight angles, and all
three stations are considered for the combination of 12 angles. Fig. 21
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shows that the accuracy decreases by 1.98%, 0.16%, and 2.22% in the
kitchen, living room and classroom respectively when considering a
single angle with respect to the combination of 12 angles. Even though
the above results show no significant variation in performance even
if the angle resolution is decreased from 12 angles combined to any
individual angle, we suggest aggregating at least the angles of two
spatially diverse STAs to obtain a robust algorithm.

4.2.5. Evaluation of CNN filter size

To further investigate the trade-off between computation complex-
ity and accuracy, we introduce a width multiplier « € (0,1] to each
layer of the CNN-based classifier. For a given number of input channels
C and output channels Z, they become aC and aZ after applying the
multiplier. Hence, the computation complexity will be reduced by a?
roughly. Applying the width multiplier « to BeamSense, the channel
size of each conv-block becomes a x 128, a X 64, a X 32, respectively.
Fig. 22 shows how the accuracy changes when applying width mul-
tiplier @ € {0.07,0.13,0.25,0.5,0.75}. BeamSense accuracy, averaged
over the three environments, is 97.22%, 98.01%, 98.62%, 98.88%,
and 99.02%, respectively. As the CNN width decreases from 0.75
to 0.07, the accuracy drops marginally by 1.8%. This observation
indicates that BeamSense can adapt to limited computation resources
and latency-sensitive cases by sacrificing little accuracy.

4.3. Evaluation of BeamSense with FAMReS algorithm

To address the challenge of generalization to unseen environments
and subjects, we have proposed FAMReS in Section 3.2.1. We com-
pare the performance of FAMReS with the state-of-the-art FSL algo-
rithm OneFi [44] and the transfer learning (TL) algorithm presented in
WiTransfer [56] for cross-domain WiFi sensing. BeamSense utilizes
the FAMReS algorithm to effectively adapt with just 15 s of new
data, equivalent to 150 BFAs samples from an unseen environment
or subject. This approach achieves an impressive average accuracy of
92.85% when tested in new, unseen environments and 91.87% for
previously unseen subjects. This adaptation requires only 36.37 s on
average, on a Linux machine with Nvidia A100 GPU, demonstrating
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its practicality for real-time applications. These results highlight the
necessity of FAMReS in enhancing the robustness and versatility of
our model, enabling it to maintain high performance across diverse
deployment scenarios.

Fig. 23(a) shows that with only 15 s of new data, FAMReS can adapt
to new environments with an average accuracy of 94.97%, 90.51%, and
93.09% when trained in the kitchen, living room, and classroom re-
spectively. On the other hand, WiTransfer achieves accuracy of 13.4%,
18.02%, and 16.52% respectively in the three different configurations.
The reason relies on the fact that the WiTransfer pre-trained model is
optimized for a specific configuration and the adaptation to new con-
figurations through transfer learning requires a considerable amount of
data to get rid of the data bias, i.e., 15 s of new data are not enough for
WiTransfer to achieve satisfactory accuracy. OneFi achieves an accu-
racy of 64.72%, 63.36%, and 63.24% respectively in new environments
when trained in the kitchen, living room, and classroom. Although the
results show that OneFi can generalize to new environments to some
extent, FAMReS performs better since it fine-tunes the whole model and
learns shared information across different tasks by using meta-learning.
On the contrary, OneFi utilizes information from one task and only fine-
tunes the last layers of the neural network model that performs the
classification. The performance of the algorithms in generalizing over
new subjects is presented in Fig. 23(b). The results show a trend similar
to the generalization over unseen environments. FAMReS is 73.41%
more accurate than WiTransfer and 24.81% more accurate than OneFi
on average, confirming the benefit of the few-shot learning approach
adopted in this current work. We finally evaluated the performance of
FAMReS as a function of different setups as discussed in Section 4.2.3.
Fig. 23(c) shows that FAMReS achieves an accuracy of 90.93%, 94.38%,
and 93.20% when trained with data collected in setup 1, setup 2,
and setup 3 respectively, and tested in the other setups. FAMReS
outperforms WiTransfer and OneFi by 74.88% and 27.28% on average
when used in the new unseen setups. The generalization performance
achieved when using the base CNN model (presented in Fig. 7) is also
reported in Fig. 23 for comparison. The results show that the base CNN
is unable to adapt to new environments, subjects, and orientations,
reaching an average accuracy of 6.21%.

4.4. BeamSense performance as a function of the time variable &

The time variable 6 represents the duration of the period in which
FAMReS gathers BFAs samples in a new environment for fine-tuning.
Large § values correspond to more samples used for fine-tuning while
small § corresponds to fast adaptation but may lead to sub-optimal
performance. Hence, the quality of a generalization algorithm can be
measured by evaluating how the sensing performance varies when
changing 6. The fewer samples are needed by an algorithm to gen-
eralize effectively over unseen situations, the better that approach is
for practical deployments. In this section, we compare the sensing
accuracy of BeamSense with the other considered sensing algorithms
when generalizing to new environments using different § values. Fig. 24
illustrates the performance of the different sensing algorithms as a
function of 6. The results indicate that as 6 decreases from 30 s to
10 s, FAMReS experiences only a modest accuracy drop of 5.30% and
11.13% on average in unseen environments and subjects, respectively.
In contrast, WiTransfer’s performance deteriorates sharply with a short
5, demonstrating that, without a meta-learning phase, transfer learning
demands more data for adaptation. While OneFi remains more stable
than WiTransfer, its accuracy drops to 52.26% and 43.92% in unseen
environments and subjects, respectively — 39% lower than FAMReS.
This confirms the advantage of FAMReS strategy, which fine-tunes the
entire network rather than only the classifier, as done by OneFi.
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4.5. BeamSense performance as a function of the number of subjects in
the training dataset

We analyze the performance of BeamSense as a function of the
number of subjects considered at training time. Fig. 25(a) shows
the classification accuracy of BeamSense with the baseline CNN
(i.e., without generalization capabilities) when trained and tested on
an increasing number of subjects (1, 3, and 6). Here, data from all the
subjects considered at the testing time were included in the training
- training and testing datasets contain BFAs from all the subjects but
are disjoint in time. The results show that the BeamSense accuracy
remains above 95% in all the cases in the different environments
revealing that the algorithm effectively learns activity-specific features
when trained with data associated with different subjects. In Fig. 25(b)
we evaluate the performance of BeamSense as a function of the
number of subjects considered at training time when using FAMReS
for generalizing over unknown subjects. The results show that the
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performance improves by 20.8% and 10.3% with OneFi and FAMReS
when the considered number of subjects for training is increased from
1 to 5. This means that the higher the number of subjects in the training
set, the more the network is able to focus on subject-independent
features that provide generalizability over subjects for whom examples
of activity-related traces were not provided to the learning algorithm
during training.

4.6. Inference time, computational complexity, and energy efficiency of
BeamSense

We analyze BeamSense in terms of inference time, computational
resources, and energy efficiency. Fig. 26 presents the inference time
and the number of Floating Point Operations Per Seconds (FLOPs) for
the execution of BeamSense when using different numbers of OFDM
sub-channels for sensing.

The BeamSense model with 234 sub-channels requires 20.28 ms
and 21.20 GFLOPs, while the model with 20 sub-channels takes
15.03 ms and 0.559 GFLOPs. Note that the energy consumption of
the Wi-Fi devices remains unaffected, as BeamSense runs entirely
on the server. Indeed, BeamSense uses BFAs, which are transmitted
unencrypted from STAs to the AP in accordance with IEEE 802.11
standards. The BFAs of the multiple STAs are recorded in a single
capture at the server without the need to modify the Wi-Fi system. Since
BeamSense operates with standard Wi-Fi transmissions, no additional
energy is consumed by the Wi-Fi devices themselves.

To study the energy efficiency of BeamSense, we evaluated the
computational complexity of executing it. We provide an energy con-
sumption estimation based on GFLOPS, which is independent of the
hardware used. For each GFLOP, we estimate an energy consumption
of approximately 0.23148 pAh. Therefore, for 234 sub-channels requir-
ing 21.20 GFLOPs, the energy consumption is approximately 0.0049
mAh, and for 20 sub-channels requiring 0.559 GFLOPs, it is about
0.00013 mAh. This analysis demonstrates that BeamSense’s energy
demands are minimal and confined to the computational server, with
no additional burden placed on the Wi-Fi devices themselves.
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Fig. 27. Sensing overhead per input tensor with CSI based approach for a single
monitor for different number of sub-channels.

4.7. BeamSense sensing overhead analysis

Given the limited availability of radio spectrum resources — which
should be shared by communications and sensing services — the effi-
ciency of a sensing system is strongly linked with its sensing overhead,
i.e., the channel occupancy for sensing data transmission. To minimize
this overhead, in our system, the BFAs samples are directly acquired by
the BeamSense server given that they are transmitted unencrypted
over the air by each STAs in the network to the AP. This eliminates
the need for edge offloading thereby minimizing channel occupancy.
In turn, BeamSense operates without occupying the wireless channel,
regardless of the number of sensing STAs, transmission bandwidth, and
MIMO configurations. On the other hand, CSI-based sensing methods,
e.g., OneFi and WiTransfer, introduce additional sensing overhead
as, unlike BeamSense, sensing data is captured at each STA in the
network. This requires direct access to the sensing device and the
occupation of spectrum resourced for the offloading of the captured CSI
samples to the edge server. This makes the overall channel occupation
of the CSI-based approaches depend on the total number of STAs
included in the sensing system. Fig. 27 reports the sensing overhead
of a CSI input tensor, i.e.,, 10 CSI samples as depicted in Fig. 5, for
a single STA operating on a channel with 80 MHz of bandwidth.
The results indicate that even a single input tensor captured within
a 0.1-s time window occupies 110 KB when considering 234 OFDM
sub-channels, which reduces to 35 KB for 80 sub-channels. Overall, the
sensing overhead increases exponentially with CSI-based approaches
like OneFi and WiTransfer. Therefore, employing state-of-the-art CSI-
based approaches with a high sampling rate or more STAs included
in the sensing system inevitably saturates the network by increasing
the sensing overhead. In contrast, BeamSense entails zero-redundant
channel occupancy, regardless of the sampling rate or the number of
sensing STAs.

4.8. Evaluating BeamSense performance in smart home applications: A
case study on human gesture recognition

To demonstrate the generalizability of BeamSense across vari-
ous applications, we further evaluate its performance considering a
different smart home application: human gesture recognition. In this
task, two subjects perform gestures representing digits O through 9
for three minutes per gesture across three different orientations in a
conference room, as shown in Fig. 28. The data preprocessing and
classification procedures follow the steps summarized in Fig. 5 and
detailed in Section 3.2. The results, presented in Fig. 29, illustrate
the system’s gesture recognition performance across the three orien-
tations. The gesture recognition performance across three orientations
demonstrates consistently high accuracy for all stations, with com-
bined results exceeding 98% in every case. In Orientation 1, Station
1 performs best with 96.95% accuracy, while Orientation 2 shows
slightly lower but still robust accuracy across all stations, ranging from
91.54% to 93.44%. Orientation 3 yields the highest individual station
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Fig. 28. Experimental setups of human gesture recognition. Two different subjects
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environment.
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Fig. 29. Performance of human gesture recognition in three different orientations of
beamformees.

performances, particularly for Stations 2 and 3, which both exceed
97%. The consistently strong combined results highlight the system’s
ability to integrate data from multiple stations, ensuring highly accu-
rate gesture recognition across varying orientations and environments.
Figs. 30 and 31 presents the orientation and subject generalization per-
formance of FaMReS (learning approach of BeamSense) respectively.
FaMReS demonstrates a clear advantage in domain generalization per-
formance compared to both OneFi and WiTransfer. For instance, when
trained in Orientation 1 and tested on Orientation 2, FaMReS achieves
90.00% accuracy, which is 23.32% higher than OneFi’s 72.68%, and
70.54% higher than WiTransfer’s 19.46%. Similarly, when trained in
Orientation 3 and tested in Orientation 1, FaMReS achieves 92.28%,
outperforming OneFi by 25.04% (OneFi’s accuracy being 67.24%) and
WiTransfer by 72.62% (WiTransfer’s accuracy being 19.66%).

In subject generalization, FaMReS continues to show substantial
improvements. When trained with Sub 1 and tested with Sub 2, FaMReS
achieves 93.00%, which is 20.32% higher than OneFi’s 72.68% and an
impressive 63.54% higher than WiTransfer’s 29.46%. Similarly, when
trained with Sub 2 and tested with Sub 1, FaMReS achieves 94.94%,
outperforming OneFi by 29.17% (OneFi’s accuracy being 65.77%) and
WiTransfer by 57.60% (WiTransfer’s accuracy being 37.34%). These re-
sults underscore the strong generalization capability of FaAMReS, signifi-
cantly surpassing both competing methods across different orientations
and subjects.
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Fig. 30. Comparative analysis of BeamSense performance for gesture recognition
when considering new orientations not included in the training dataset.

= FZA FAMReS ZZZ OneFi
3:: 100 WiTransfer

& 75

35

9 50 %
<

Trained with Sub 2
Tested with Sub 1

Trained with Sub 1
Tested with Sub 2

Fig. 31. Comparative analysis of BeamSense performance for gesture recognition
when considering new subjects not included in the training dataset.

5. Conclusions and remarks

In this article, we have proposed BeamSense, a novel approach
to Wi-Fi sensing based on the usage of MU-MIMO BFAs. Conversely
from CSI-based approaches, (i) the BFAs can be easily recorded by off-
the-shelf devices without MIMO capabilities and without any firmware
modification; (ii) a single frame of the BFAs capture the multiple chan-
nels between the AP and the STAs, thus achieving a much better sensing
granularity. BeamSense includes a few-shot learning (FSL)-based clas-
sification algorithm to adapt to new environments and subjects with
few additional data. We have evaluated BeamSense through an ex-
tensive data collection campaign involving three subjects performing
twenty different activities in three indoor environments. We have
compared our approach with traditional CSI-based sensing approaches
and show that BeamSense improves the accuracy by 10% on the
average, while our FSL-based approach improves accuracy by up to
30% when compared with SOTA domain adaptive sensing models. We
hope that this work will pave the way for additional research on BFAs
and BFI-based Wi-Fi sensing.
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